条件频率分布

条件频率分布是一种统计方法,它表示某一组数据在特定条件下的分布情况。例如,如果我们想要研究不同年龄段人群的身高分布情况,我们可以构建一个条件频率分布表,其中一列表示年龄段,另一列表示身高。这样,我们就可以通过查看表格中的数据来了解不同年龄段人群身高的分布情况。

条件频率分布的计算方法也很简单,只需要对数据进行分组,然后计算每一组数据中的频率即可。例如,如果我们想要研究不同年龄段人群的身高分布情况,我们可以将人群按照年龄进行分组,然后计算每一组人群中身高在某一范围内的人数占总人数的比例。这样,我们就可以得到一张条件频率分布表,其中每一行表示不同年龄段人群的身高分布情况。

条件频率分布的优点在于它可以帮助我们更好地了解数据的分布情况,并且还可以通过观察表格中的数据来发现规律,从而提出有意义的结论。

1. Python的安装及编译 首先,需要在官网下载Python的安装包,根据操作系统选择合适的版本进行安装。 安装完成后,可以在终端或命令行中输入`python`,如果出现Python的版本号,则表示安装成功。 2. 创建一个语料库 语料库指的是用于自然语言处理的文本数据集合。可以使用Python内置的`open`函数来打开一个文本文件并读取其中的内容。 ```python with open('corpus.txt', 'r', encoding='utf-8') as f: corpus = f.read() ``` 上述代码将打开名为`corpus.txt`的文本文件,并将其中的内容读取到`corpus`变量中。 3. 计算文本词汇表,并统计单词出现的次数 可以使用Python中的`collections`模块来统计词频。 ```python import collections # 分词 words = corpus.split() # 统计词频 word_freq = collections.Counter(words) # 打印词频最高的前10个单词 print(word_freq.most_common(10)) ``` 上述代码将对语料库中的文本进行分词,并使用`collections`模块中的`Counter`函数统计每个单词出现的次数。最后,打印出现频率最高的前10个单词。 4. 过滤文本 在自然语言处理中,常常需要对文本进行过滤,例如去除停用词等。可以使用Python中的`nltk`模块来进行过滤。 ```python import nltk from nltk.corpus import stopwords # 下载停用词 nltk.download('stopwords') # 过滤停用词 filtered_words = [word for word in words if word.lower() not in stopwords.words('english')] # 统计词频 filtered_word_freq = collections.Counter(filtered_words) # 打印词频最高的前10个单词 print(filtered_word_freq.most_common(10)) ``` 上述代码将使用`nltk`模块中的`stopwords`函数下载英文停用词,并将文本中的停用词过滤掉。最后,统计过滤后的词频并打印出现频率最高的前10个单词。 5. 按文体(两个以上)计数词汇 可以使用Python中的`nltk`模块中的`corpus`函数来读取不同文体的语料库,并分别对其进行统计。 ```python import nltk from nltk.corpus import gutenberg, brown # 读取Gutenberg语料库 gutenberg_words = gutenberg.words() gutenberg_word_freq = collections.Counter(gutenberg_words) # 读取Brown语料库 brown_words = brown.words() brown_word_freq = collections.Counter(brown_words) # 打印Gutenberg语料库中出现频率最高的前10个单词 print(gutenberg_word_freq.most_common(10)) # 打印Brown语料库中出现频率最高的前10个单词 print(brown_word_freq.most_common(10)) ``` 上述代码将分别读取Gutenberg语料库和Brown语料库,并统计每个文体中单词的出现频率。最后,打印出现频率最高的前10个单词。 6. 绘制情态动词的条件频率分布图和分布表 可以使用Python中的`nltk`模块中的`ConditionalFreqDist`函数来计算情态动词的条件频率分布,并使用`matplotlib`模块来绘制图表。 ```python import nltk from nltk.corpus import brown import matplotlib.pyplot as plt # 计算情态动词的条件频率分布 cfd = nltk.ConditionalFreqDist((genre, word) for genre in brown.categories() for word in brown.words(categories=genre) if word in ['can', 'could', 'may', 'might', 'must', 'will']) # 绘制条件频率分布图 cfd.plot() # 绘制条件频率分布表 cfd.tabulate() ``` 上述代码将使用`nltk`模块中的`ConditionalFreqDist`函数计算情态动词在不同文体中的条件频率分布,并使用`matplotlib`模块绘制图表。最后,使用`tabulate`函数打印条件频率分布表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值