数据的交叉验证是一种用来评估机器学习模型的方法,它通过将训练数据分成若干个互斥的集合,然后轮流使用这些集合之一来评估模型,并使用剩余的集合来训练模型,从而避免了因过度拟合或者欠拟合而导致的模型评估不准确的问题。交叉验证通常用来帮助我们选择机器学习模型和调整超参数,并且也可以用来估计模型的泛化误差。
数据的交叉验证是什么
最新推荐文章于 2024-09-07 22:16:25 发布
数据的交叉验证是一种用来评估机器学习模型的方法,它通过将训练数据分成若干个互斥的集合,然后轮流使用这些集合之一来评估模型,并使用剩余的集合来训练模型,从而避免了因过度拟合或者欠拟合而导致的模型评估不准确的问题。交叉验证通常用来帮助我们选择机器学习模型和调整超参数,并且也可以用来估计模型的泛化误差。