

六年级奥数第四章第一节 圆的周长
探究目标
1.能正确求圆的周长、弧长和扇形的周长,会求组合图形的周长。
2.能够运用作图的方法解决平面图形在运动过程中某个点经过的轨迹长度。
3.能抓住题目中问题的本质,建立所求问题和所学知识之间的联系,以便解决问题。
4.了解圆的周长在生活中的应用,初步培养运用数学知识解决实际问题的能力。
探究过程 参与一下“做数学”的过程,乐趣尽在其中哦!
例 有一天,老鼠杰瑞遇到猫汤姆,杰瑞撒腿就跑,汤姆紧紧追赶,这时杰瑞跑到一个圆形池塘边,连忙跳进水中。汤姆在岸上盯着杰瑞,在池边跟老鼠跑,准备在杰瑞上岸时抓住他。已知汤姆的速度是杰瑞的2.5倍,杰瑞有没有办法在他游上岸时,不被汤姆抓住?
建议:1.画出一个示意图,借助示意图进行分析。
2.借助字母进行分析。
3.要帮助杰瑞想好逃生的策略:尽可能拉大和汤姆之间的距离,然后向猫的相反方向逃生。
讨论:1.如果老鼠沿着池塘游,伺机上岸,那么无论老鼠游到哪儿,猫都会跟着跑,只要老鼠一上岸,就会被猫抓住。
2.如果老鼠跳下水后,沿着池塘的直径游,猫要跑半个圆才能到达对面,猫跑的路程是老鼠的1.57倍,而猫的速度是老鼠的2.5倍,那么等老鼠上岸时,猫已经在岸边等候了,老鼠还是跑不了。
3.老鼠先游到池塘的中心,看准猫的位置,然后向和猫相反的方向游,可以逃生。
证明:老鼠在O点,猫在A点,老鼠游向B点,距离是半径,而猫要跑圆周长的一半,圆周长的一半是半径的3.14倍,而猫的速度只有老鼠的2.5倍,所以当猫跑过来时,老鼠已经顺利逃生。
例1 (2003·广东省部分市县小学六年级数学竞赛试题)已知AB=120米,BC=70米(如下图),从A到C有3条不同的半圆弧线路可走,请你判断走哪一条半圆弧线路的距离最短?
[完全解题] 可以分别计算三条线路的长度, 再进行比较。
线路①:(120+70)÷2=95(米)
线路②:(120+70)÷2×=95(米)
线路③:120÷2+70÷2=95(米)
所以三条线路一样长。
[技法点睛] 这道竞赛题实际是下题的变式题,将下题的思路作一介绍会有利于同学们对例题的理解。
下图中大圆的周长与大圆中四个小圆周长的和相比,谁大?
设大圆的直径为D,四个小圆的直径分别是d1、d2、d3、d4,则有D=d1+d2+d3+d4。
因为大圆的周长为:C=D
四个小圆周长的和为:C=d1+d2+d3+d4
=(d1+d2+d3+d4)
=D
所以大圆的周长与四个小圆周长的和相等。
再看例题,事实上不需计算就可以判断出三条线路一样长。
例2 一个半圆形纸片的周长是20.56厘米,它的直径是多少厘米?
[完全解题] 本题可以考虑用方程来解答。
设半圆形纸片的直径是x厘米。
3.14×x×1/2+x=20.56
1.57x+x=20.56
2.57x=20.56
x=8
答:它的直径是8厘米。
[技法点睛] 解答这个问题有不同的思考方法,利用字母分析可以发现半圆形周长与直径之间的倍数关系,分析如下:

即半圆形周长是半径的5.14倍,是直径的2.57倍,对于例题而言,可以用20.56÷2.57=8(厘米),求得答案。
相对而言,用方程解答这类问题更具有一般性,适用的范围也更广些。例如已知一个圆心角是30度的扇形的周长是7.57厘米,求半径是多少厘米,用方程解答的思路就比较容易。
设半径长x厘米。

答:半径是3厘米。
例3 (2002·小学数学奥林匹克预赛试题)在下图中,阴影部分的周长是多少厘米?(取3.14。)
[完全解题] 首先分析阴影部分的周长是由以下部分组成的:
①直径为36厘米的圆周长的一半;
②半径为36厘米、圆心角为30°所对的弧的长度;
③长度为36厘米的线段。
分别求出各段的长度,再相加。
36×3.14÷2=56.52(厘米)
36×3.14×2×33600=18.84(厘米)
56.52-1-18.84+36=111.36(厘米)
答:阴影部分的周长是111.36厘米。
[技法点睛] 求阴影部分的周长首先将组成阴影的各个部分的边线找出,把边线分为两类:弧和线段。分别求出各个边线的长度再相加就可求得阴影部分的周长。
例4 (2003·“《小学生数学报》”杯“江苏省第三届小学生探索与应用能力竞赛试题”)下图中有6个完全相同的圆,其中A、B、C、D、E被固定在玻璃桌面上,第6个圆F紧贴着A、B、C、D、E这5个固定圆慢慢地沿顺时针方向滚动,滚动过程中不发生任何滑动。当圆F再滚回到出发点P时,它自身绕圆心旋转了多少圈?
[完全解题] 重点是分析圆F在绕圆B、C、D、E、A滚动时,分别滚动了的圈数。
[技法点睛] 通过实物演示,画图等方式可以直观地看到圆F的运动过程,这是在解决关于圆的运动的有关问题时常用的方法。
例5 地球的赤道是个近似的圆形,赤道的半径约6371千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳长增加6.28米,使绳子与地面之间有均匀的缝隙,请问缝隙有多宽?一只高4厘米的蜗牛能否从该缝隙间爬过?
[完全解题] 先将本题的题意整理一下:将赤道和绳子所围成的圆看成两个大小不同的圆,这两个圆组成了一个圆环,内圆半径是6371千米,外圆周长比内圆周长多6.28米,求环宽。如下图:
当然可以先算出内圆周长,再算出外圆周长,就可以求出外圆半径,环宽也就可以求出来了。
这种方法的缺点是计算量大,过程繁杂,并且容易算错。
有简单的方法吗?可以借助字母来试一试。
设内圆半径为r,环宽为x,根据题意得:
2×(x+r)-2r=6.28
2x+2r-2r=6.28
2x=6.28
x=1
解答过程简单明了,计算简洁。解答的结果也使我们大吃一惊,如此大的一个环形,外圆周长仅比内圆周长多6.28米,环宽竟达到1米!也就是说,绳子距地面1米高,别说是蜗牛,即使是人,也可以很从容地弯腰走过去。
[技法点睛] 上面的解答过程对同学们有两点启示:
1.巧妙地利用字母进行分析,进行解答,过程简洁、优美,感受到数学的魅力。
2.当已知环形内、外圆的周长差时,就可以求出环宽。环宽与内、外圆的周长差有关。
当环宽为1厘米时,内、外圆的周长相差6.28厘米;
当环宽为2厘米时,内、外圆的周长相差12.56厘米;
当环宽为3厘米时,内、外圆的周长相差18.84厘米;
内、外圆的周长差是环宽的2倍。
例6 一条直线上放着一个长方形1,它的长与宽分别是4厘米和3厘米,对角线长5厘米。让这个长方形绕顶点A顺时针旋转90度到达长方形2的位置,此时D点到达了E点的位置。再让长方形2绕顶点E顺时针旋转90度到达长方形3的位置,此时C点到达了F点的位置。再让长方形3绕顶点F顺时针旋转90度到达长方形4的位置,此时B点到达了G点的位置。再让长方形4绕顶点G顺时针旋转90度到达长方形5的位置,此时长方形1的A点到达了H点的位置。求A点所经过的总路程。
[完全解题] 从长方形1到长方形2,A点的位置没有变化。
从长方形2到长方形3,A点经过的路程是半径3厘米、圆心角为90度的弧的长度。
从长方形3到长方形4,A点经过的路程是半径5厘米、圆心角为90度的弧的长度。
从长方形4到长方形5,A点经过的路程是半径4厘米、圆心角为90度的弧的长度。
根据公式,分别求出三段弧的长度,再相加就可以求出问题。
答:A点经过的总路程是18.84厘米。
[技法点睛] 研究物体运动过程中的周长、弧长问题时,首先要通过实验来观察物体在运动过程中的位置变化,然后在图形中用圆规画出该点的运动轨迹,最后求出题目的所求问题。
例7 (2002·重庆市沙坪坝区小学六年级数学竞赛试题)两根同样长的铁丝,一根围成正方形,一根围成圆(都不计接头),结果正方形的边比圆的半径长3(-2)米。两根铁丝共长多少米?
[完全解题] 由于正方形和圆是用两根同样长的铁丝围成的,因此正方形和圆的周长相等。以此为等量关系,可以列方程解答。
答:两根铁丝共长75.36米。
[技法点睛] 解题思路要灵活,利用题目中的等量关系列方程解决问题是常用的解题方法。
例8 如下图,一个半径1厘米的硬币沿着长方形纸板的边缘滚动,长方形纸板长30厘米,宽20厘米,当硬币滚回原来位置时,硬币的圆心经过的路程是多少厘米?
[完全解题] 当硬币沿纸板的长边或宽边滚动时,圆心经过的路程是条线段;当硬币沿长方形的四个顶点转动时,圆心经过的路程是四条弧。
四条线段的长度总和相当于长方形纸板的周长。四条弧拼在一起,恰好可拼成一个半径为1厘米的圆,只要求出圆周长就相当于求出四条弧的长度总和。
(30+20)×2=100(厘米)
3.14×1×2=6.28(厘米)
100+6.28=106.28(厘米)
答:硬币的圆心经过的路程是106.28厘米。
[技法点睛] 解答该类问题的第一步是得到圆心经过的轨迹,然后将轨迹进行分类并分析每类轨迹的长度如何求出,最后进行解答。
推荐阅读:(点击下面蓝色标题即可进入)
1-6年级奥数知识讲座
声明:本公众号尊重原创,素材来源于网络,好的内容值得分享,如有侵权请联系删除。