softmax函数用Python写

文章介绍了如何利用Python的Numpy库来实现softmax函数,该函数用于将向量的元素转换为概率分布形式。代码主要涉及np.exp()用于计算指数,np.sum()计算指数和,并通过除法得到归一化的结果。
摘要由CSDN通过智能技术生成

softmax 函数在 Python 中可以用以下代码实现:

import numpy asnp

def softmax(x):
    return np.exp(x) / np.sum(np.exp(x), axis=0)

上面的代码使用了 Numpy 库来实现对向量 x 进行 softmax 计算。其中,np.exp(x) 计算了 x 中每一个元素的指数,np.sum(np.exp(x), axis=0) 计算了所有指数的和,最终通过除法得到了 softmax 函数的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值