
Vector 有着明确的翻译 - 向量,如果搜索 Covector, 会把我们带到线性泛函 linear functional 的页面,可以看到:
In linear algebra, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars.
Covector 看到有翻译成余向量的,也许蛮合适?毕竟 sine 、 cosine...
co 作为英文单词都前缀
- 有共同、相互、同等的意思(比如 cooperate、copartner、coequal),
- 如果用在数学上有 ‘余、补’的意思,比如 sine/cosine, tangent/cotangent, secant/cosecant。
- ‘余、补’ 其实也有点伴随、跟随的意思,比如 covarience
当然还有 coset(陪集),colatitude(余纬度),余维数(codimension),余代数(coalgebra)...
然后继续脑洞想到了共轭(conjugation), 但是 conjugation 的前缀不是 co,而是 con- together 演化而来, conjugation 共轭家族也有很多:共轭复数(complex conjugation),共轭转置(conjugate transpose)、共轭指数(conjugate indices)... conjugation作为一般的英语单词是‘结合’,‘配合’的意思。
言归正传, 先说 Vector - 向量.
Vector
向量我们一般有三种看法:
- 一组数

向量之间可以相加, 向量还可以数乘:


这里依旧值得强调 向量本身是不变的,但在不同坐标系中的表示是不同的。Vectors are Invariant ≠ Vector components are not invariant. 就像


当我们有不同的基,向量写成的形式是:

同时在基变换和坐标变换 中我们写到过基变换与坐标变换有一个'相反'的关系。这种关系叫做'反变(contravariant,也称逆变)'。
在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

经常,为了更明确的表示反变,我们把分量的角标提上来,写成这种形式:

- 箭头
第二种看法是把向量看成有大小和方向的箭头,数乘和向量加法也可以和箭头的操作对应起来。不过值得注意的是并不是所有的向量都能表示为箭头,毕竟数学上很多东西都能抽象为向量,比如多项式。
- 向量空间的元素
向量可以理解成向量空间的元素, 向量空间定义为:

其中 V 是向量, S 是标量, + 和 · 是定义的加法和数乘. 基本上说来,向量就是我们可以加起来和数乘的东西。
如果需要更严格的定义可以查看 wikipedia.
Covector
那么 Covector 要怎么理解/看待呢?
- 行向量
理解成行向量并不一定准确,因为对于基正交的情况是合理的,但是对于基不正交的情况不太合理,o(╯□╰)o
- 作用于向量上的函数
把 covector 理解成向量上的函数,比如我有 covector


举个例子,比如我们有 covector



很容易验证这个函数具有‘线性’性:

接下来的问题则是我们怎么看待它,比如 covector



我们可以在平面上画出这个函数的等高线,再加上箭头指向等高线增加的方向:

这样之后,我们甚至无需知道 covector 具体是多少,值需要看它跨过几根等高线,就知道函数作用的结果,比如下图:

下面我们就继续利用这样的看法,同样对于 covector, 数乘和相加是怎样的效果:
数乘

相加

- 对偶空间中的元素
至此,给出 covector 的另一个定义,先引入'对偶空间':

对偶空间中的元素就是 covector(余向量),


至此 covector 定义理清,一张图总结如下:

参考:
- tensor for beginners