两个vector对应元素相加_Vector 和 Covector

本文深入探讨了向量的三种理解,包括数值表示、箭头模型和向量空间元素。重点介绍了余向量(Covector)的概念,将其视为作用于向量的线性函数,与向量的反变性概念相对照。通过实例和图形展示了Covector的运算性质,包括数乘和相加。文章还揭示了Covector在对偶空间中的地位,以及其在坐标变换中的行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

260dffd974a38db629acdf052ad21e79.png

Vector 有着明确的翻译 - 向量,如果搜索 Covector, 会把我们带到线性泛函 linear functional 的页面,可以看到:

In linear algebra, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars.

Covector 看到有翻译成余向量的,也许蛮合适?毕竟 sine 、 cosine...

co 作为英文单词都前缀

  • 有共同、相互、同等的意思(比如 cooperate、copartner、coequal),
  • 如果用在数学上有 ‘余、补’的意思,比如 sine/cosine, tangent/cotangent, secant/cosecant。
  • ‘余、补’ 其实也有点伴随、跟随的意思,比如 covarience

当然还有 coset(陪集),colatitude(余纬度),余维数(codimension),余代数(coalgebra)...

然后继续脑洞想到了共轭(conjugation), 但是 conjugation 的前缀不是 co,而是 con- together 演化而来, conjugation 共轭家族也有很多:共轭复数(complex conjugation),共轭转置(conjugate transpose)、共轭指数(conjugate indices)... conjugation作为一般的英语单词是‘结合’,‘配合’的意思。

言归正传, 先说 Vector - 向量.

Vector

向量我们一般有三种看法:

  • 一组数

equation?tex=%5Cvec%7Bv%7D+%3D+%5Cbegin%7Bbmatrix%7D+v_1+%5C%5C+v_2+%5C%5C+%5Cvdots+%5C%5C+v_n+%5Cend%7Bbmatrix%7D%2C+%5Cvec%7Bw%7D+%3D+%5Cbegin%7Bbmatrix%7D+w_1+%5C%5C+w_2+%5C%5C+%5Cvdots+%5C%5C+w_n+%5Cend%7Bbmatrix%7D+%5C%5C

向量之间可以相加, 向量还可以数乘:

equation?tex=%5Cvec%7Bv%7D+%2B+%5Cvec%7Bw%7D+%3D+%5Cbegin%7Bbmatrix%7D+v_1+%5C%5C+v_2+%5C%5C+%5Cvdots+%5C%5C+v_n+%5Cend%7Bbmatrix%7D+%2B+%5Cbegin%7Bbmatrix%7D+w_1+%5C%5C+w_2+%5C%5C+%5Cvdots+%5C%5C+w_n+%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7D+v_1+%2B+w_1+%5C%5C+v_2+%2B+w_2+%5C%5C+%5Cvdots+%5C%5C+v_n+%2B+w_n+%5Cend%7Bbmatrix%7D+%5C%5C

equation?tex=a%5Cvec%7Bv%7D+%3D+a+%5Cbegin%7Bbmatrix%7D+v_1+%5C%5C+v_2+%5C%5C+%5Cvdots+%5C%5C+v_n+%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7D+av_1++%5C%5C+av_2++%5C%5C+%5Cvdots+%5C%5C+av_n++%5Cend%7Bbmatrix%7D+%5C%5C

这里依旧值得强调 向量本身是不变的,但在不同坐标系中的表示是不同的。Vectors are Invariant ≠ Vector components are not invariant. 就像

equation?tex=%5Cvec%7Bv%7D 在用不同的基
equation?tex=v_1%2C+v_2%2C+%5Ccdots%2C+v_n 可能是不同的。

当我们有不同的基,向量写成的形式是:

equation?tex=%5Cvec%7Bv%7D+%3D+%5Csum_%7Bi%3D0%7D%5En+v_i+%5Cvec%7Be%7D_i++%3D+%5Csum_%7Bi%3D0%7D%5En+%5Ctilde%7Bv%7D_i+%5Ctilde%7B%5Cvec%7Be%7D%7D_i++%5C%5C

同时在基变换和坐标变换 中我们写到过基变换与坐标变换有一个'相反'的关系。这种关系叫做'反变(contravariant,也称逆变)'。

在数学里,反变(contravariant,也称逆变)和共变(covariant,也称协变)描述一个向量(或更广义来说,张量)的坐标,在向量空间的基底/坐标系转换之下,会如何改变。

be203b9825a8b2cc931cf46d3ca34b09.png

经常,为了更明确的表示反变,我们把分量的角标提上来,写成这种形式:

equation?tex=%5Cvec%7Bv%7D+%3D+%5Csum_%7Bi%3D0%7D%5En+v%5Ei+%5Cvec%7Be%7D_i++%3D+%5Csum_%7Bi%3D0%7D%5En+%5Ctilde%7Bv%7D%5Ei+%5Ctilde%7B%5Cvec%7Be%7D%7D_i++%5C%5C
  • 箭头

第二种看法是把向量看成有大小和方向的箭头,数乘和向量加法也可以和箭头的操作对应起来。不过值得注意的是并不是所有的向量都能表示为箭头,毕竟数学上很多东西都能抽象为向量,比如多项式。

  • 向量空间的元素

向量可以理解成向量空间的元素, 向量空间定义为:

equation?tex=%28V%2C+S%2C+%2B%2C+%5Ccdot+%29%5C%5C

其中 V 是向量, S 是标量, + 和 · 是定义的加法和数乘. 基本上说来,向量就是我们可以加起来和数乘的东西。

如果需要更严格的定义可以查看 wikipedia.

Covector

那么 Covector 要怎么理解/看待呢?

  • 行向量

理解成行向量并不一定准确,因为对于基正交的情况是合理的,但是对于基不正交的情况不太合理,o(╯□╰)o

  • 作用于向量上的函数

把 covector 理解成向量上的函数,比如我有 covector

equation?tex=%5Calpha%3A+V+%5Cmapsto+%5Cmathbb%7BR%7D :

equation?tex=%5Calpha%28%5Cvec%7Bv%7D%29+%3D+%5Calpha_1+v%5E1+%2B+%5Calpha_2+v%5E2+%2B+%5Ccdots+%2B+%5Calpha_n+v%5En+%3D+%5Csum_%7Bi+%3D+0%7D%5En+%5Calpha_i+v%5Ei+%5C%5C

举个例子,比如我们有 covector

equation?tex=%5Cbegin%7Bbmatrix%7D+2+%26+1+%5Cend%7Bbmatrix%7D , 作用在向量
equation?tex=%5Cbegin%7Bbmatrix%7D+3+%5C%5C+-4+%5Cend%7Bbmatrix%7D ,其实也就是点乘:

equation?tex=%5Cbegin%7Bbmatrix%7D+2+%26+1+%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D+3+%5C%5C+-4+%5Cend%7Bbmatrix%7D+%3D+2+%5Ccdot+3+%2B+2+%5Ccdot+-4+%3D+2+%5C%5C

很容易验证这个函数具有‘线性’性:

equation?tex=%5Calpha%3A+V+%5Cmapsto+%5Cmathbb%7BR%7D+%5C%5C+%5Calpha%28%5Cvec%7Bv%7D+%2B+%5Cvec%7Bw%7D%29+%3D+%5Calpha%28%5Cvec%7Bv%7D%29+%2B+%5Calpha%28%5Cvec%7Bw%7D%29+%5C%5C+%5Calpha%28n%5Cvec%7Bv%7D%29+%3D+n+%5Calpha%28%5Cvec%7Bv%7D%29%5C%5C

接下来的问题则是我们怎么看待它,比如 covector

equation?tex=%5Cbegin%7Bbmatrix%7D2+%26+1+%5Cend%7Bbmatrix%7D , 比如作用于向量
equation?tex=%5Cbegin%7Bbmatrix%7D+x+%5C%5C+y+%5Cend%7Bbmatrix%7D 上,我们知道结果是:

equation?tex=%5Cbegin%7Bbmatrix%7D2+%26+1+%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D+x+%5C%5C+y+%5Cend%7Bbmatrix%7D+%3D+2x+%2B+1y+%5C%5C

我们可以在平面上画出这个函数的等高线,再加上箭头指向等高线增加的方向:

1364757c9dc362ae0c1b0e99761e3c07.png
来自 tensor for beginners

这样之后,我们甚至无需知道 covector 具体是多少,值需要看它跨过几根等高线,就知道函数作用的结果,比如下图:

36f924a52efdf729c01dff8997ac57b8.png
来自 tensor for beginners

下面我们就继续利用这样的看法,同样对于 covector, 数乘和相加是怎样的效果:

数乘

c59647e6c28e0321e71a214126ef0871.png
来自 tensor for beginners

相加

8286558d373fd5c5a01d331807928732.png
来自 tensor for beginners
  • 对偶空间中的元素

至此,给出 covector 的另一个定义,先引入'对偶空间':

equation?tex=+%28V%5E%2A%2C+S%2C+%2B%2C+%5Ccdot%29%5C%5C

对偶空间中的元素就是 covector(余向量),

equation?tex=V+%5Cmapsto+%5Cmathbb%7BR%7D . covector 本身也有加法和数乘,当然这个加法和数乘都是定义在 covector 上的:

equation?tex=%5Cbegin%7Balign%7D+%28n+%5Ccdot+%5Calpha%29%28%5Cvec%7Bv%7D%29+%26%3D+n%5Calpha%28%5Cvec%7Bv%7D%29%5C%5C+%28%5Cbeta+%2B+%5Cgamma%29%28%5Cvec%7Bv%7D%29+%26%3D+%5Cbeta%28%5Cvec%7Bv%7D%29+%2B+%5Cgamma%28%5Cvec%7Bv%7D%29+%5Cend%7Balign%7D%5C%5C

至此 covector 定义理清,一张图总结如下:

b5d3fd92322cc7ece6ae7935573455da.png
来自 tensor for beginners

参考:

  • tensor for beginners
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值