答:from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB# 读入数据 train_data = [... ] test_data = [... ]# 创建词向量 cv = CountVectorizer() X_train = cv.fit_transform(train_data) X_test = cv.tran
写一段使用贝叶斯分类,使用CountVectorizer进行向量化并并采用TF-IDF加权的代码...
该文介绍了一种基于Python的机器学习库sklearn,用于文本特征提取和分类的方法。首先,利用CountVectorizer转换训练和测试数据集为词频矩阵;接着,应用TfidfTransformer处理数据;最后,通过MultinomialNB朴素贝叶斯分类器进行模型训练。
9501

被折叠的 条评论
为什么被折叠?



