写一段使用贝叶斯分类,使用CountVectorizer进行向量化并并采用TF-IDF加权的代码...

该文介绍了一种基于Python的机器学习库sklearn,用于文本特征提取和分类的方法。首先,利用CountVectorizer转换训练和测试数据集为词频矩阵;接着,应用TfidfTransformer处理数据;最后,通过MultinomialNB朴素贝叶斯分类器进行模型训练。

答:from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB# 读入数据 train_data = [... ] test_data = [... ]# 创建词向量 cv = CountVectorizer() X_train = cv.fit_transform(train_data) X_test = cv.tran

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值