sklearn K折(KFold)交叉验证案例,展开细节代码与cross_validate简写

一、通常的随机森林模型代码

对于一个基本的随机森林预测模型:

from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score


def get_train_x_y():
    from sklearn.preprocessing import StandardScaler
    x = pd.DataFrame(data=np.random.randint(0, 10, size=(1000, 5)))
    y = np.random.randint(0, 2, 1000)
    x = StandardScaler().fit_transform(x)
    return x, y


if __name__ == '__main__':
    x_train, y_train = get_train_x_y()
    # 切分训练集与测试集
    from sklearn.model_selection import train_test_split

    x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.3)
    # 使用随机森林预测
    my_model = RandomForestClassifier(n_estimators=10)
    my_model.fit(x_train, y_train)
    # 预测并得到准确率
    result_prediction = my_model.predict(x_test)
    score = accuracy_score(y_test, result_prediction)
    print(score)  # 得到预测结果区间[0,1]

二、K折交叉验证的随机森林代码

1. 切分方式:随机切分

使用K折前,前面都不变,从main函数开始:

if __name__ == '__main__':
    x_train, y_train = get_train_x_y()
    # 切分训练集与测试集,注意所有的交叉验证等都是在训练集上做的操作,测试集只有最后的最后才会使用到
    from sklearn.model_selection import train_test_split

    x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.3)
    # 使用随机森林建模
    my_model = RandomForestClassifier(n_estimators=10)

然后就是设置KFold,n_splits=5时,切分训练集为5组

    # 使用交叉验证
    from sklearn.model_selection import KFold

    kfold = KFold(n_splits=5)
    
    for train_index, test_index in kfold.split(x_train, y_train):
        # train_index 就是分类的训练集的下标,test_index 就是分配的验证集的下标
        this_train_x, this_train_y = x_train[train_index], y_train[train_index]  # 本组训练集
        this_test_x, this_test_y = x_train[test_index], y_train[test_index]  # 本组验证集
        # 训练本组的数据,并计算准确率
        my_model.fit(this_train_x, this_train_y)
        prediction = my_model.predict(this_test_x)
        score = accuracy_score(this_test_y, prediction)
        print(score)  # 得到预测结果区间[0,1]

之后可以把每一组的score都保存起来,计算平均方差什么的。

KFold更多参数请参考:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

2.切分方式:不均衡数据集下按比例切分

当然切分可以选择不同的切分方式,比如不均衡的数据集:

from sklearn.model_selection import StratifiedKFold

kfold = StratifiedKFold(n_splits=5)

这个会先将y分层,然后按照与训练集同样的比例进行切分

更多参数请参考:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

三、KFold的简便写法

不需要把kfold切分开,只需要用一个cross_validate工具就行:

    # 使用交叉验证
    from sklearn.model_selection import KFold
    kfold = KFold(n_splits=5)

    # 使用K-fold的简写方式
    from sklearn.model_selection import cross_validate

	# 参数依次是:模型,训练集x,训练集y,kfold,评价指标
    cv_cross = cross_validate(my_model, x_train, y_train, cv=kfold, scoring=('accuracy', 'f1'))

cv_cross会返回每一轮的训练与预测时间,还有评价指标值,可以大大减少代码量

更多scoring请参考:https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules

四、随机森林预测与KFold交叉验证完整代码

from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np


def get_train_x_y():
    from sklearn.preprocessing import StandardScaler
    x = pd.DataFrame(data=np.random.randint(0, 10, size=(1000, 5)))
    y = np.random.randint(0, 2, 1000)
    x = StandardScaler().fit_transform(x)
    return x, y


if __name__ == '__main__':
    x_train, y_train = get_train_x_y()
    # 切分训练集与测试集,注意所有的交叉验证等都是在训练集上做的操作,测试集只有最后的最后才会使用到
    from sklearn.model_selection import train_test_split

    x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.3)
    # 使用随机森林建模
    my_model = RandomForestClassifier(n_estimators=10)
    # 使用交叉验证
    from sklearn.model_selection import KFold

    kfold = KFold(n_splits=5)

    # 使用K-fold的简写方式
    from sklearn.model_selection import cross_validate

    cv_cross = cross_validate(my_model, x_train, y_train, cv=kfold, scoring=('accuracy', 'f1'))
  • 17
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 14
    评论
`GridSearchCV` 是用于进行交叉验证搜索的函数,`cross_val_score` 和 `cross_validate` 是用于进行交叉验证评估的函数,它们都是来自于 `sklearn.model_selection` 模块的函数。 `GridSearchCV` 可以对模型的超参数进行网格搜索,并且结合交叉验证来评估模型性能,它的使用方法如下: ```python from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() X, y = iris.data, iris.target # 定义模型和超参数搜索空间 param_grid = {'C': [0.1, 1, 10], 'gamma': [0.1, 1, 10]} svc = SVC(kernel='rbf') # 进行网格搜索和交叉验证 grid_search = GridSearchCV(svc, param_grid=param_grid, cv=5) grid_search.fit(X, y) # 输出最优参数和最优目标值 print(grid_search.best_params_) print(grid_search.best_score_) ``` `cross_val_score` 可以对模型进行交叉验证评估,它的使用方法如下: ```python from sklearn.model_selection import cross_val_score from sklearn.svm import SVC from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() X, y = iris.data, iris.target # 定义模型 svc = SVC(kernel='rbf', C=1, gamma=0.1) # 进行交叉验证评估 scores = cross_val_score(svc, X, y, cv=5, scoring='accuracy') # 输出评估结果 print(scores) print(scores.mean()) ``` `cross_validate` 可以在交叉验证过程中计算多个评估指标,它的使用方法如下: ```python from sklearn.model_selection import cross_validate from sklearn.svm import SVC from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() X, y = iris.data, iris.target # 定义模型 svc = SVC(kernel='rbf', C=1, gamma=0.1) # 定义评估指标 scoring = ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro'] # 进行交叉验证评估 scores = cross_validate(svc, X, y, cv=5, scoring=scoring) # 输出评估结果 print(scores) ``` 这些函数的具体参数和使用方法可以参考 Scikit-learn 官方文档。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆萌的代Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值