matlab仪表数据识别_求 指针仪表的图形识别系统 用LABVIEW 和MATLAB完成的 设计方案...

该文介绍了一种使用MATLAB和LABVIEW设计的指针仪表图形识别系统。通过训练数据预处理和神经网络模型,实现了语音信号分类,并展示了训练结果和误差分析。
摘要由CSDN通过智能技术生成

展开全部

%% 清空62616964757a686964616fe59b9ee7ad9431333264643735环境变量

clc

clear

%% 训练数据预测数据提取及归一化

%下载四类语音信号

load data1 c1

load data2 c2

load data3 c3

load data4 c4

%四个特征信号矩阵合成一个矩阵

data(1:500,:)=c1(1:500,:);

data(501:1000,:)=c2(1:500,:);

data(1001:1500,:)=c3(1:500,:);

data(1501:2000,:)=c4(1:500,:);

%从1到2000间随机排序

k=rand(1,2000);

[m,n]=sort(k);

%输入输出数据

input=data(:,2:25);

output1 =data(:,1);

%把输出从1维变成4维

for i=1:2000

switch output1(i)

case 1

output(i,:)=[1 0 0 0];

case 2

output(i,:)=[0 1 0 0];

case 3

output(i,:)=[0 0 1 0];

case 4

output(i,:)=[0 0 0 1];

end

end

%随机提取1500个样本为训练样本,500个样本为预测样本

input_train=input(n(1:1500),:)';

output_train=output(n(1:1500),:)';

input_test=input(n(1501:2000),:)';

output_test=output(n(1501:2000),:)';

%输入数据归一化

[inputn,inputps]=mapminmax(input_train);

%% 网络结构初始化

innum=24;

midnum=25;

outnum=4;

%权值初始化

w1=rands(midnum,innum);

b1=rands(midnum,1);

w2=rands(midnum,outnum);

b2=rands(outnum,1);

w2_1=w2;w2_2=w2_1;

w1_1=w1;w1_2=w1_1;

b1_1=b1;b1_2=b1_1;

b2_1=b2;b2_2=b2_1;

%学习率

xite=0.1

alfa=0.01;

%% 网络训练

for ii=1:10

E(ii)=0;

for i=1:1:1500

%% 网络预测输出

x=inputn(:,i);

% 隐含层输出

for j=1:1:midnum

I(j)=inputn(:,i)'*w1(j,:)'+b1(j);

Iout(j)=1/(1+exp(-I(j)));

end

% 输出层输出

yn=w2'*Iout'+b2;

%% 权值阀值修正

%计算误差

e=output_train(:,i)-yn;

E(ii)=E(ii)+sum(abs(e));

%计算权值变化率

dw2=e*Iout;

db2=e';

for j=1:1:midnum

S=1/(1+exp(-I(j)));

FI(j)=S*(1-S);

end

for k=1:1:innum

for j=1:1:midnum

dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));

db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));

end

end

w1=w1_1+xite*dw1'+alfa*(w1_1-w1_2);

b1=b1_1+xite*db1'+alfa*(b1_1-b1_2);

w2=w2_1+xite*dw2'+alfa*(w2_1-w2_2);

b2=b2_1+xite*db2'+alfa*(b2_1-b2_2);

w1_2=w1_1;w1_1=w1;

w2_2=w2_1;w2_1=w2;

b1_2=b1_1;b1_1=b1;

b2_2=b2_1;b2_1=b2;

end

end

%% 语音特征信号分类

inputn_test=mapminmax('apply',input_test,inputps);

for ii=1:1

for i=1:500%1500

%隐含层输出

for j=1:1:midnum

I(j)=inputn_test(:,i)'*w1(j,:)'+b1(j);

Iout(j)=1/(1+exp(-I(j)));

end

fore(:,i)=w2'*Iout'+b2;

end

end

%% 结果分析

%根据网络输出找出数据属于哪类

for i=1:500

output_fore(i)=find(fore(:,i)==max(fore(:,i)));

end

%BP网络预测误差

error=output_fore-output1(n(1501:2000))';

%画出预测语音种类和实际语音种类的分类图

figure(1)

plot(output_fore,'r')

hold on

plot(output1(n(1501:2000))','b')

legend('预测语音类别','实际语音类别')

%画出误差图

figure(2)

plot(error)

title('BP网络分类误差','fontsize',12)

xlabel('语音信号','fontsize',12)

ylabel('分类误差','fontsize',12)

%print -dtiff -r600 1-4

k=zeros(1,4);

%找出判断错误的分类属于哪一类

for i=1:500

if error(i)~=0

[b,c]=max(output_test(:,i));

switch c

case 1

k(1)=k(1)+1;

case 2

k(2)=k(2)+1;

case 3

k(3)=k(3)+1;

case 4

k(4)=k(4)+1;

end

end

end

%找出每类的个体和

kk=zeros(1,4);

for i=1:500

[b,c]=max(output_test(:,i));

switch c

case 1

kk(1)=kk(1)+1;

case 2

kk(2)=kk(2)+1;

case 3

kk(3)=kk(3)+1;

case 4

kk(4)=kk(4)+1;

end

end

%正确率

rightridio=(kk-k)./kk

本回答由提问者推荐

已赞过

已踩过<

你对这个回答的评价是?

评论

收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值