python 两个矩阵相同元素_Python——Numpy的简单操作

本文介绍了Python Numpy库中的矩阵创建、查看属性、reshape()函数的使用,以及单位矩阵的生成。详细讲解了如何通过np.array、np.arange创建矩阵,通过shape属性查看行列数,通过reshape()改变数组形状,以及使用np.eye生成单位矩阵。同时,文中还提到了数组的访问、切片、降维操作和numpy.dot()函数在点积和矩阵乘法中的应用。
摘要由CSDN通过智能技术生成

1、矩阵创建及简单操作

(1)可以通过python的list来创建数组,假如说list = [1 , 2 , 3 , 4] ,array_1 = np.array(list_1)创建一个数组。

(2)还可以通过arange来创建数组,比方说array_4 = np.arange(1 ,10)即可以创建一个从1到10的数组。

d1ee8edea618dc7512a6cbb107502800.png

2、数组行数和列数的查看

(1)array.shape返回数组的行数和列数; array.size返回数组的元素个数;array.dtype返回数组里元素的数据类型。

numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。有时候我们可能需要知道某一维的特定维数。

当想要创建二维数组时

>>> import numpy as np
>>> y = np.array([[1,2,3],[4,5,6]])
>>> print(y)
[[1 2 3]
 [4 5 6]]
>>> print(y.shape)
(2, 3)
>>> print(y.shape[0])
2
>>> print(y.shape[1])
3

可以看到y是一个两行三列的二维数组,y.shape[0]代表行数,y.shape[1]代表列数。

三维情况

>>> x  = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[0,1,2]],[[3,4,5],[6,7,8]]])
>>>> print(x)
[[[1 2 3]
  [4 5 6]]

 [[7 8 9]
  [0 1 2]]

 [[3 4 5]
  [6 7 8]]]
>>> print(x.shape)
(3, 2, 3)
>>> print(x.shape[0])
3
>>> print(x.shape[1])
2
>>> print(x.shape[2])
3

可以看到x是一个包含了3个两行三列的二维数组的三维数组,x.shape[0]代表包含二维数组的个数,x.shape[1]表示二维数组的行数,x.shape

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值