easyui datagrid不是相邻的能合并单元格吗_数学还能这么学?高中要有这个我早就及格了...

看完本篇文章,保证你彻底理解「排列」「组合」这两个相爱相杀的概念到底有何区别。

排列英文名叫 Arrangement 或者 Permutation,本文采用更 fancy 的 Permutation来表示排列,下文统称为 P。

组合英文名叫 Combination,下文统称为 C。

P 和 C 的本质区别在于:决策的顺序对结果有没有影响。

下面举例说明

现在有8个人,他们的名字分别为:

  1. Alice

  2. Bob

  3. Catherine

  4. Donald

  5. Elizabeth

  6. Floria

  7. Gates

  8. Hilton

现在有 3 个奖杯,本别为 Golden 金牌,Silver 银牌,Bronze 铜牌。

我们的任务是:将这 3 个奖牌颁发给 8 个人中的 3 个,先颁发金牌,再颁发银牌,再颁发铜牌。问颁发奖牌的不同方式总共有哪些?

那么很明显,这是一个 Permutation 排列的问题,因为把金牌先颁给 Alice,再把银牌颁给 Bob,跟把金牌先颁给 Bob,再把银牌颁给 Alice 这是两种不同的颁奖方式。

好了,现在假设我们先把金牌颁发给 Alice,再把银牌颁发给 Bob,再把铜牌颁发给 Catherine:

dd98162377375b80ec31230c83db60c1.png

第一步:颁发金牌 ️,可以在8个人中任选一个,有8种选择。A可以被替换为 B C D E F G H中的任何一个。

第二步:颁发银牌 ,可以在除去已经获得金牌的人之外的7个人中任选一个,有7种选择。

第三步:颁发铜牌 ,在已经获得金牌、银牌的两个人之外的6个人中任选一个,有6种选择。

那么很明显,总共的颁奖方式有

8 * 7 * 6 种

以此类推,假如我们现在要颁发 8 个奖牌给 8个人,那么我们会按照上述方法,每次颁发一种奖牌,直到奖牌被颁发完为止,这样,颁发奖牌的方式总共有:

8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 种

但是,我们只颁发 3 个奖牌就不颁发了呀,怎么才能在乘到 5 那里停止呢?很明显,摆脱 5 * 4 * 3 * 2 * 1 即可,我们的做法是:把这个尾巴除掉就行啦!

fd85a17cf2317820e7cfb40e0635365c.png

也就是:

db9180bd76119e4446a6ce83bbc60114.png

这个公式相当于在说:

我们只使用 8 个数字的前 3 个!

那么,如果我们现在有 n 个运动员,要按顺序地颁发 k 个奖牌,有多少不同的颁奖方式呢?答案是:

a4d5162d92b198bee7c82cc5f0f402ce.png

至此,我们得到:

如果要想在 n 个物品中,按顺序的选择 k 个物品,那么选择的方式总共有这么多种:

da93baf8391869afccbd108de9666591.png

至此,排列的计算公式怎么来的应该清楚了吧。

接下来讲组合

同样还是颁奖,这次我们颁的不是金、银、铜牌,而是 3 个一模一样的可乐瓶,不好意思,主办方真的就是来搞笑的,可乐瓶真的 nobody cares,所以给谁先颁奖后颁奖,结果都是一样的,Alice 先颁发到一个可乐瓶、Bob 后拿到,跟 Bob先拿到一个可乐瓶、Alice后拿到,两种结果都是一样的。

那么在 8 个人当中选 3 个人颁发一样的可乐瓶,有多少种颁发方法呢?

在上面排列的基础上,也就是给三个人颁发的是不同的奖杯,最终选出的三个人,拿奖是有顺序的,也就是,最后计算出来的所有方法中,把三个奖杯的放置顺序进行了排列。

但是现在,如果颁发的是可乐瓶,那么,获奖的顺序变得不再重要,谁先得,谁后得,结果都是一样的。上面排列的结果已经把不同颁发顺序视作不同颁发方法了,现在,3 个人中,不同的颁发顺序都是同一种!

所以,我们只需要把「上一步排列获得的结果」除以「不同颁发顺序的总数」,得到的就是可乐瓶颁发方法的总数。

不同颁发顺序的总数有 3!种

所以,总共有这么多种:

3649d6583b0ba7a91defd4a9210efffe.png

继续,如果要想在 n 个物品中,选择 k 个物品出来,选择的顺序无所谓,那么选择的方式总共有这么多种:

2ffbc35a8cd6b22b7573fcb0a2be0981.png

C(n,k)也记作:

21c7b6a33099bd0b763a36d12bfa62ea.png

ok,至此我想你们应该懂得排列跟组合的区别,以及他们的计算公式是怎么来的吧?

一、定义

从n个不同的元素中选取m个元素,若选取顺序对结果有影响叫排列。常用A表示。若选取顺序对结果无影响叫组合。常用C表示。

两个概念的联系:核心都是计算一个事件的方法数,只要是从n个不同的元素中选取m个元素,计算有多少种方法数的问题,都是利用排列和组合来求解的。

区分就在于,若选取顺序对结果有影响,就用排列来求解,若无影响,就用组合来求解。而很多同学容易迷惑的就在于有没有影响不易区分,举例说明。

二、例题

例1:班上有50个人,从中选2个人买苹果,问:有多少种购买苹果的方法数?

36c132cfc52630897636aefb6bef646f.png
555e0405a6a8ea83d4976b477f711464.png

bf1252668c597205d6d9d69aa0cb35da.png

一、解决排列组合综合性问题的一般过程如下:

1、认真审题弄清要做什么事;

2、怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类;

3、确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素;

4、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

小结: “16字方针”:分类相加,分步相乘,有序排列,无序组合。

二、基本题型讲解

1、特殊元素和特殊位置问题

例1:(1)从8个人的数学兴趣小组中选两人分别担任正、副班长的不同方法种数。

分析: 这是无限制条件的排列,显然方法种数是 dee27782-8f44-eb11-8da9-e4434bdf6706.svg

(2)由0,1,2,3,4,5可以组成多少个没有重复数字的五位数奇数。

分析: 这是有限制条件的排列,由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

TIP:特殊元素和特殊位置优先策略:一般先考虑特殊元素,再考虑其它元素。若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。做到不重不漏。

6a44c3df233df2f133104ac0c6754985.png

三、相邻相间问题

1、相邻元素捆绑策略

例2:7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法。

分析:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 e0e27782-8f44-eb11-8da9-e4434bdf6706.svg种不同的排法。
5ab1e45946a8402f9ba556b731f2caa1.png

TIP:捆绑法,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题,即将需要相邻的元素合并为一个元素,再与其它元素一起排列,同时要注意合并元素内部也必须排列。

2、不相邻问题插空策略

例3:7人站成一排,如果甲乙必须不相邻,那么不同的排法种数?

分析:除甲乙外,其余5个排列数为 e3e27782-8f44-eb11-8da9-e4434bdf6706.svg种,再用甲乙去插6个空位有 e5e27782-8f44-eb11-8da9-e4434bdf6706.svg种,不同的排法种数是 e3e27782-8f44-eb11-8da9-e4434bdf6706.svg e5e27782-8f44-eb11-8da9-e4434bdf6706.svg=3600.

例4、某班要排毕业晚会的节目顺序,有4个音乐节目、2个舞蹈节目和1个曲艺节目,要求2个舞蹈节目不连排,不同的排法是?

e3e27782-8f44-eb11-8da9-e4434bdf6706.svge5e27782-8f44-eb11-8da9-e4434bdf6706.svg=3600.

TIP:插空法,对于某几个元素不相邻的排列问题,可先将其它元素排好,然后将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。

3、元素定序问题

例5:7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?

分析: (倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: eee27782-8f44-eb11-8da9-e4434bdf6706.svg种方法。 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 efe27782-8f44-eb11-8da9-e4434bdf6706.svg种方法,其余的三个位置甲乙丙共有1种坐法,则共有 efe27782-8f44-eb11-8da9-e4434bdf6706.svg种方法。

TIP:一般用除法处理,即n个元素的全排列中若有m个元素必须按照一定顺序排列,这m个元素相邻或不相邻不受限制,其排列数为f1e27782-8f44-eb11-8da9-e4434bdf6706.svg

4、重排问题求幂策略

重复排列问题要区分两类元素:一类是可重复,另一类不能重复,把不重复的元素看作“店”,能重复的元素看作“客”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 。

例6:8名同学争夺3项冠军,获得冠军的可能性有多少种?

分析:对于同一项冠军,学生不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有 f2e27782-8f44-eb11-8da9-e4434bdf6706.svg种不同的结果。

小结:不可重复的当作底数,可重复的当做指数。

练习:

(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?

(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?

(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?

解:(1)f3e27782-8f44-eb11-8da9-e4434bdf6706.svg(2)f5e27782-8f44-eb11-8da9-e4434bdf6706.svg(3)f5e27782-8f44-eb11-8da9-e4434bdf6706.svg

你都答对了吗?

好多同学对分组问题都有个疑惑,到底什么时候考虑平均分组?平均分组问题该如何解决?为什么要用平均分组?

考虑一种简单的情况:将4个元素(a,b,c,d)平均分为2组,则每组应有2个元素。

第一步:从4个元素中取出2个为第1组,有f9e27782-8f44-eb11-8da9-e4434bdf6706.svg种取法.再从剩下的2个元素中取2个为第2组,有fae27782-8f44-eb11-8da9-e4434bdf6706.svg种取法,则按乘法原理,到目前为止,有fce27782-8f44-eb11-8da9-e4434bdf6706.svg种分法;

ea0ed863a4872a7f8307d727b98b1b5a.png

第二步:假设第一步中先取了(a,b)为第1组,则(c,d)自动为第2组。因为此时是不涉及分给谁的,所以这种分法和先取(c,d)再取(a,b)实际上算同一种分法。也就是说第一步得到的分法是有序的,2个组就有01e37782-8f44-eb11-8da9-e4434bdf6706.svg种顺序。要消除这种有序,只需除以顺序的数目。

6c7855a378bb03f9ee336335e46a85eb.png

第三步:最后平均分的分法就是06e37782-8f44-eb11-8da9-e4434bdf6706.svg

所谓平均分组是指将所有的元素分成所有组元素个数相等或部分组元素个数相等。 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要除以08e37782-8f44-eb11-8da9-e4434bdf6706.svg,即m!,其中m表示组数。

举个栗子

1、全部均匀分组:将12本书按4:4:4平均分成三堆,有多少种不同的分法?

0be37782-8f44-eb11-8da9-e4434bdf6706.svg

2、部分均匀分组:将12本书按2:2:2:6分成四堆有多少种不同的分法?

0de37782-8f44-eb11-8da9-e4434bdf6706.svg

看出来了吗?套公式嘛,谁不会啊!

客官别急,再来个栗子

变1:将12本书按4:4:4平均分给小明、小红、小华三个人,有多少种分法?

PS:上述方法处理有分配对象和无分配对象的问题都可以噢~

    下文试图用具体例子和小的数字来解释各个排列组合公式的意义,用图表的形式列举出来,由浅显到深,让大家彻底地直观地理解各个公式的含义。

写在前面:如何数清楚一个事有多少种可能性,在生活中用的并不多,但在数学里是一个很有趣、也很常考的板块,叫做计数或者排列组合。

排列组合问题简单起来可以非常简单,比如:一个“田”字里有多少个正方形?难起来也可以非常难,中国的高考、高中数学联赛和美国的 AMC、AIME 都会重点考察这个板块。

很多同学一遇到排列组合公式 P 呀 C 呀什么的就不清楚,这很正常,因为初学者在不一一列举的情况下,很难直观地想清楚哪些算重了,哪些算漏了。我自己作为学生刚接触这个的时候也是这样,每次一遇到排列组合题就很慌,后来发现,学习的关键是:你先得非常明确一些基本模型,这些基本模型往往只用很小的数字就能说明,想清楚后再做一些数字大的问题就轻松了。

本文内容包括:

一:P 的由来

二:C 的由来

三:5 个组合数的公式直观解释

四:10 个常见题型和方法

现在开始!

一:P 的由来

所谓排列组合,排列在组合之前,咱们要聊的第一个概念是“排列”,排列的英文是 Permutation 或者 Arrangement,因此在数学符号中,用 P 或者 A 表示都可以,二者意思完全一样。

我们常见的 P 右边会跟两个数字(或字母),右下角的数字 n 表示总数,右上角的数字 m 表示抽出的个数。整个符号的意思是“从 n 个人中,有顺序地抽出 m 个人的抽法数”,可以读作“P n 抽 m”。那么,到底什么叫做有顺序的?我们来举个数字很小的例子:

比如:班里有三名同学,成绩前两名有几种可能性?

咱们可以用乘法原理:选第一名有 3 种可能性,选第二名有 2 中可能性,因为第一名那个人不可能同时又是第二名了,将这两步相乘起来。(如果你不太理解乘法原理,可以看看下图直观列举的表示。)

8554bfb7d1394cbe10c43da1665bbcf2.png

这个公式需要注意的是:虽然书上每次讲到这个公式时一般以阶乘(factorial)的形式给出,但实际计算中,往往不用阶乘。我的记法是:从大的数字开始往小乘,乘“小的数字那么多”个。

二:C 的由来

咱们聊的第二个概念是“组合”,它比排列更常用,组合的英文是 Combination,因此在数学符号中用 C 表示,美国和英国教材中,也常用“长括号”表示组合数。

我们常见的 C 右边会跟两个数字(或字母),右下角的数字 n 表示总数,右上角的数字 m 表示抽出的个数。整个符号的意思是“从 n 个人中,不计顺序地抽出 m 个人的抽法数”,可以读作“C n 抽 m”。那么,到底什么叫做不计顺序的?我们也来举个例子:

比如:班里有三名同学,选出两名代表参加年级会议有几种选法?

哈哈,这就可以用到之前排列数的结论了!就让刚才的第一名和第二名去参加会议。但是,对于参加会议来说,谁是第一谁是第二不重要呀!因此我把原图的红色和蓝色都涂成了黑色,以示无区别。(如下图)

至此,第二步中,第一种和第三种都是 A、B 的组合,完全一样,就会有一些算重的,至于有多少个算重,取决于抽出个数 m 的全排列种数,即 m 的阶乘。(如果你不太理解哪些算重了,可以仔细看看下图中箭头所指的对应关系)

9af824d083a1a285c5222b0752e4613b.png

于是,组合数公式就是在排列数公式上除以一个 m!。但实际计算中,往往不用阶乘。我的记法是:从大的数字开始往小乘,乘“小的数字那么多”个,再除以“小的数字开始往小乘,乘小的数字那么多个”。

三:组合数的公式直观解释

组合公式Ⅰ:

98a716972cf3161c6ab81aa5782cc882.png

这个公式课内和竞赛都会常常用到。我在刚学的时候把它联想成“做值日”问题,四个同学中,选三名同学做值日就相当于选一名同学放学直接回家。

比如,班里有 A、B、C、D 四个同学,每天要选出三个同学做值日,有几种选法?这个问题对于学过排列组合的同学自然非常简单了,就是 C 4 抽 3,但是,假如问一个没学过排列组合的人,他会怎么想呢?如果想 ABC,ACD……这种就会比较难想,不如去想它的反面:选A、B、C 或 D 放学直接回家,总共就四种。这就能直观的理解这个公式了。

这个公式对于运算 C 10 抽 8 这样的组合数时非常有用,直接转化成 C 10 抽 2 来计算。

组合公式Ⅱ:

d302c10628d98ddb67bb21cc21da699a.png

这个公式课内会提到,但不要求熟练掌握,竞赛会常用。可以把它联想成“约妹子看电影”问题,看看在四个妹子中,想约两个妹子有几种约法。

如果四个人都是普通朋友,看作是相同的 A、B、C、D,那自然有 C 4 抽 2 =6 种约法。下面我们来点刺激的:假如这四个人中有一个是你女朋友,她最特殊,你会先问她来不来:

①如果她来,但你还想一共约两个妹子(手动滑稽),那么就需要在其他三个妹子中再约一个,有 C 3 抽 1 种方法;

②如果她不来,那你就需要在其他三个妹子中再约两个,有 C 3 抽 2 种方法。

两类相加,表示的意义就是从 4 个妹子中约两个妹子的情况总数,即公式成立。

这个公式对于处理两个组合数相加问题非常有用,落实在计算上,我把它总结成口诀:上面的数字取大的,底下的数字加一。

组合公式Ⅲ

3490a201dcf3f5a5a751f38137a3fa13.png

这个公式课内和竞赛都会常常用到。我把它叫做"抓兔子"问题,想象一个笼子里有两只兔子,抓出来的话有几种抓法?

第一种方法是我去笼子里抓,我在抓的时候就想好是抓 1 只还是抓 2 只,或是抓 0 只(即不抓)。由于先想好了这一点,就会有 C 2 抽 1 和 C 2 抽 2 这些组合数,分别表示按“抓一只”、“抓两只” 分类,每类的情况数;

第二种情况是我把笼子打开,让每只兔子自己选择跳出来或是不跳出来(2 种可能性),每只兔子都是独立的个体,所以可以用乘法原理,总共的情况数是 n 个 2 相乘,即 2 的 n 次方。

两种方法都表示“兔子出来的情况数”,因此一样,即公式得以解释。

这个公式对于处理一系列“底下相同的”组合数相加的问题非常好用,大大节省计算量。而且它与集合、二项式定理等中学数学知识紧密相连,需深入理解。

组合公式Ⅳ

f8bc4d117247f98d60cb6240c26d4db4.png

这个公式一般在竞赛中会出现。我把它叫做"火车头"问题:抽出的一些元素,总有一个打头的,称为火车头,它也是火车的一节,只不过是特殊的一节。

具体来讲,比如说你要在 A、B、C、D、E 这 5 个小球中抽取 3 个小球,咱们可以按“哪个小球是第一个”分类

第一类:A 为火车头,那么还需在后面四个小球中抽取两个小球;

第二类:B 为火车头,那么还需在后面三个小球中抽取两个小球;

第三类:C 为火车头,那么还需在后面两个小球中抽取两个小球。

至于 D 或 E 开头的,就不足“三节车厢”了,故不计算。我们把之前说的三类加起来,就直观地理解了这个公式。

这个公式对于处理一系列“上面相同的”组合数相加的问题非常好用,大大节省计算量。记忆方法是:和为上面下面都加一。

组合公式Ⅴ

7eeaa351be6720a71e1d2859a64d6b7b.png

这个公式是一个相加和相乘结合的公式,看似复杂,但并不难理解。我对它的理解是:可以想象成班里选几名学生,分男女选和不分男女选情况数一样。

比如说,咱们假设班里有 7 名学生,4 男 3 女。如果选出三个人参加竞赛有几种选法?首先容易想到的是 C 7 抽 3 =35。没错,不过咱们还有一个思路,就是按“男女各多少人”分类讨论。

第一类:0 男 3 女,分别抽取,再乘起来。

第二类:1 男 2 女,分别抽取,再乘起来。

第三类:2 男 1 女,分别抽取,再乘起来。

第四类:3 男 0 女,分别抽取,再乘起来。

这四类是互不重叠的,可用加法原理将其相加。原公式就得以直观理解。

上面 5 个公式都可以代数证明,也可按照我举得例子通俗理解,如果这二者你都很清楚,那排列组合就能融会贯通啦。

  • 排列,就是指从给定n个数的元素中取出指定r个数的元素,进行排序

33c80c44547a97e0b5d5c9249ed0cc70.png


总长度为r,第一个人有n-0种选,第二个有n-1种,,,,最后一个有n-(r-1)种(为什么是减去(r-1),因为到第r个人的时候,发现自己前面有r-1个人已经消耗了r-1个选择了,自己的选择余地变成n-(r-1),这和第一个人发现前面有0个选择已经消耗是一样道理)

  • 组合,则是指从给定n个数的元素中仅仅取出指定r个数的元素,不考虑排序

a7094ba677ca1711af0856ba997a4178.png


将排序取消,只在大面上看取出的元素,则情况变少除以排序数r!

  • 下面直观说明:

e4714357284171a9f358e8b72e27d428.png
  • l  排列的时候:

d0c82255d67bc3b7c006641799645c73.png

从4个球中取2个进行排列,则第一个位置有4-0种,第二个位置有4-(2-1)=3种,一共有4x3=12种情况。也就是公式

57654f5f8bb4117d3202a920b2639a5d.png
56281d6cad4f64d11593d58d7b74d8d0.png

进一步思考的话会发现如上图,排列时候,红色在第一个位置橙色在第二个位置,和橙色在第一个位置红色在第二个位置,这两张情况是不一样的。

  • l  组合的时候:

f6be05d045ea3b16b1a198952f88b59a.png

只有上面的6种情况,为什么情况会变少,是把上面诸如“红-橙”、“橙-红”这类的差别给消除变成一种情况,由于是两两成一组故数以2!也就是公式

97251a5982a07b565686970ef102d617.png
  • l  总结

总的来说,排列关注的是取出一定的情况后,在内部同时进行了一次排列;而组合只关注取出的情况,内部具体的排列方式是不加考虑的。

最后还想说的是,虽然排列值是大于组合值的,按照有小到大来说应该是组合这种情况被发现和总结的早,但是在学习的时候会发现“组合”并不是很容易理解,而且组合是在基于排列的情况下,再进行的运算。

所以,我的结论是人们是先认识的“排列”,然后才在此基础上抽象的“组合”。

排列组合有两个性质:2ee37782-8f44-eb11-8da9-e4434bdf6706.svg2fe37782-8f44-eb11-8da9-e4434bdf6706.svg .怎么去理解这两个公式呢?

先看第一个,排列的性质。你可以这样去理解,我有n个球,除此之外,我还有一个特殊的球A。对于在n+1个球中取m个球,我们可以用分类计数原理去考虑:含A的和不含A的。不含A则有 30e37782-8f44-eb11-8da9-e4434bdf6706.svg 种排列方法,含A可以考虑成,保持总数n不变,要把A放进来,那么必须要从m中去掉一个(因为要放A进来,又要保证总数不变,那必然要取走一个球,被取走的球不能再参与排列,所以要从m中减掉)。但是不要忘了,从m中任意拿掉一个球有m种拿法,所以含A的话,就有 33e37782-8f44-eb11-8da9-e4434bdf6706.svg 种取法。这很显然是分类计数,所以将两者相加就是 36e37782-8f44-eb11-8da9-e4434bdf6706.svg

再看组合的性质,理解过程大同小异,我有n个球,我还有一个A球,考虑含A和不含A的情况,不含含A则有 37e37782-8f44-eb11-8da9-e4434bdf6706.svg 种组合方法,含A的话,参照上文,有 39e37782-8f44-eb11-8da9-e4434bdf6706.svg 种。但是组合是不需要乘m的,因为组合不考虑顺序,A放进来后能和哪个元素组合实际上就已经固定了,所以不需要乘m。

db220f975be2851ccd166191f741f9ef.png
2c932d99abe0ef1f55ef31301352746f.png
182e4bbcaabfd54ecca8a12588d8808a.png

排列数:n个不同的球放入r个标号的盒子的方案数。这个问题相当于用从n个球中选出的球依次填满r个盒子,一次选一个球。原问题可以被转换为这样的一个过程:从n个球中选择一个球放入第一个盒子,再将n-1个球放入r-1个盒子这两个问题,由于是先做前者再做后者,所以方案数满足乘法原理
递推关系:P(n,r)=P(n-1, r-1)*n
它的解就是排列数

组合数:n个不同球放入r个无标号的盒子的方案数。与排列的区别在于不需要依次填满r个盒子,所以可以通过除法去除因为盒子的标号产生的方案数。
组合与排列的关系:C(n,r)=P(n,r)/r!

1.排列

排列是指从n个对象中取出r个对象,考虑这几个对象顺序的情况下,求出这几个对象的选取有多少种情况。(与顺序有关)

对于排列数,可以看做“分步解决”的问题,也就是说:

第1步,从n个对象中选取1个,有n种选择方法。

第2步,从剩下的n-1个对象中选取1个,有n-1种选择方法。

第3步,从剩下的n-2个对象中选取1个,有n-2种选择方法。

...

第r步,从剩下的n-(r-1)中选择1个,有n-r+1种选择方法。

为什么是减去(r-1)呢?因为到第r个人的时候,发现自己前面有r-1个人已经消耗了r-1个选择了,自己的选择余地编程n-(r-1),这和第一个人发现前面有0个选择已经消耗是一样道理。

那么这k个步骤结合到一起,就要n(n-1)(n-2)...(n-k+1)种选择方法,表示成就是排列数公式:

afbd3bde4158f7e054c9c32bd068eaf9.png

其中n!=n(n-1)...3*2*1,也就是说,将从n到1的数字全部相乘。

其中0!=1,可以理解为0个对象只有1中排列方法。

2.组合

组合是指从n个对象中取出r个对象,不考虑这几个对象顺序的情况下,求出这几个对象的选取有多少种情况。(与顺序无关)

将排序取消,只在大面上看取出的对象,则情况变少除以r个对象的排序数r!

51a5d498d575b37a8bc77617a48336ae.png

有机生物是有机分子的排列组合。

无机物是无机分子的排列组合。

世间万物是92个元素的排列组合。

元素是原子的排列组合。

原子是基本粒子夸克与电子的排列组合。

英语是26个字母的排列组合。

汉语是几千个汉字的排列组合。

计算机的硬件是晶体管的排列组合。

计算机的机器语言是0和1的排列组合。

因为有序而有意义。

因为差异而有了多样性。

简单可以变得超科想像的复杂。

下面说说数学中的排列组合。

排列组合简述

排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(Permutation或Arrangement)。特别地,当m=n时,这个排列被称作全排列(all permutation)。

组合(Combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。我们把有关求组合的个数的问题叫作组合问题。

排列与组合基于的两个原理:乘法原理和加法原理

如果某件事需经k步才能完成,做第一步有m1种方法,做第二步有m2种方法......做第k步有mk种方法,那么完成这件事共有m1*m2*...mk种方法。

例如,甲城到乙城有3条旅游路线,由乙城到丙城有2条旅游路线,那么从甲城到丙城共有3*2条旅游路线。

这就是乘法原理。

如果某件事可由k类不同途径之一去完成,在第一类途径中有m1种完成方法,在第二类途径中有m2种完成方法......在第k类途径中有mk种完成方法,那么完成这件事共有m1+m2+...mk种方法。

例如,由甲城到乙城去旅游有三类交通工具:汽车、火车、飞机。汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10个班次可供旅游者选择。

这就是加法原理。

排列与组合计算公式借助的工具:阶乘

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼(Christian Kramp,1760~1826)引进这个表示法。

亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

排列与组合的关系

123、132、213、231、312、321是不同的排列(元素相同,顺序不同,排列不同),是相同的组合(元素相同,顺序不同,组合相同)。这就是排列与组合的数量区别,3个元素(上标)的排列形式有3!。

排列组合,简单的说,就是一个计数问题。

我们从小时候就学过数数,一个苹果,两个苹果,但是现在对于稍微复杂一点的计数就有点不知所措了,其实,再复杂的排列组合都可以从简单的例子找到根源,记住公式是没有作用的,记住了也不会用,唯有理解计数的本质,做到不遗落,不重复。

计数,就是把一个物体的数量与整数对应起来,一首扑克54张,4种花色,13个牌面,再加上两张大小王,构成了54张牌,这里没有遗落,也没有重复,这就是简单的计数。

现在思考一个植树问题,再10米长的马路上,每隔一米种一棵树,那么需要种多少棵树?这个问题很简单,但我一开始以为就是10棵树,一米一棵树,多么简单的道理啊。然而,我错了,0米处也可以种一棵树,所以树的棵树就是11颗。这里就有了遗落,造成了计数的错误。其实只要把米数与树的棵树对应起来就好了,0米一棵树,1米两棵树,,,10米11棵树,把这个作为一个普遍规则来看就能抽象出一个n米n+1棵树的规律。

要对多个集合计数,就要使用加法,比如说上面的扑克牌,就是把牌分为大小王和普通牌,相加就得出牌的总数。在这里有一个比较重要的法则--容斥原理。例如,在1-13中,2的倍数有6个,3的倍数有4个,既是2的倍数,又是3的倍数有两个,那么根据容斥原理,或者是2的倍数,或者是3的倍数有6+4-2=8个。在容斥原理里,最重要的就是不要重复。

要对多个相关集合计数,就要使用乘法。在用上面的扑克牌为例,13种牌面,4种花色,得出普通牌的总数为13*4=52张。

再来看一些稍微复杂一点的数。首先思考一下,把ABC三张牌按照各种顺序排列,共有多少种排法?显然6种。ABC,ACB,BAC,BCA,CAB,CBA,只要做到不重复不遗落,数数总是不会出错的。但从计数的角度看,我们应该这样计算,第一次可以取出3种牌,第二次可以取出2种牌,第三次可以取出1种牌,总计321=6种。这在数学上称为置换,计算方法是用阶乘。阶乘可是会随N的增大而爆炸式增长的。

再来看看今天的重点,排列。从手上 ABCDE 5种牌中抽取3张牌排列,有多少种排法?当然可以把所有的排法写出来,然后用最简单的计数得出排列数,但我们最好还是不要这样做。用刚才置换的思路来看看,第一次可以抽取5种牌,第二次可以抽取4种牌,第三次可以抽取3种牌,总计543=60种排列方法。从这个例子中抽象就可以得到排列的一般定义,从n张牌中抽取k张按一定顺序排列就叫排列,排列的总数为n(n-1)(n-2)...(n-k+1),用阶乘表示就是n!/(n-k)!,公式不必要记,毕竟光看公式多少有点晦涩难懂,只要理解了排列的意义,抽象出来就是这个公式了。或者,如果难以理解,可以尝试用树形图来列出排列,图形化的思考方法就比较好理解吧。

排列总是和组合连在一起,是的,组合就是排列的一种特殊情况,组合就是排列不考虑顺序的一种计数方法。既然这样,那我们计算组合数可以先计算排列数,然后除以重复度,这不就是组合数吗。归纳一下就是n!/(n-k)!k!,k!就是指的是重复度,就是前面置换的排列数。

排列组合就是这样简单,根本不需要去绞尽脑汁记住公式。

人教版二年级数学上册数学广角《搭配组合》练习及答案

【练习一】

一、我会填。 (1题5分,其余每空2分,共13分) 1.    48beffe2022af16ccc4a898c2226bcb3.png 72c691c4504510b5315677c44034fc94.png 2.小兰、小刚、小丽互通电话祝贺新年,每两人都要通一次电话,他们一共通了(  )次电话。 3.在碘盐、白糖、味精三种调味品中选两种倒入右边的调料盒中,有(  )种不同的倒法。 e7f43ecf8f184b98d0a2cf0d846f6045.png 4.用3、0、8能组成(  )个不同的两位数。 5.今天上午共有语文、数学两节课,同学们上课的顺序可能有(  )种。 二、我会选。 (每题5分,共15分) 1.从小丽家到少年宫,有(  )种不同的走法。 ceeb9206006191c9e3107698f06a51c7.png ①4                ②6                ③9 2.每两个人握一次手,四个人共握(  )次手。 ①4                ②5                ③ 6 9b9222bf6b5dfb6a3133526a929996ee.png 3.在红、黄、蓝三种颜色中选两种,在三角形纸其中一面的上方和下方分别涂上不同的颜色,有(   )种可能的情况。 ①4                ②5                ③ 6 三、我会应用。 (每题12分,共72分) 1.孙悟空和妖怪斗法,把自己的名字进行多次变化,试着写出来。(每个字都不重复使用) a13c86374f21db21794ae38c9ba76574.png 2.阳阳和贝贝去王老师家做客,王老师拿出三袋糖分给阳阳和贝贝,每人分一袋,一共有几种不同的分法? 5e3d92b24349799e345bc4b0f5a1cff7.png 3.下面有两顶帽子和两副眼镜,每次选择一顶帽子和一副眼镜,共有多少种搭配方法? 8a10c2687313c97e7426d8881855f020.png 4.有4种球,每班可以借其中的两种,有多少种不同的搭配方法?(把编号写在空白处) bbbb9e2b8f9c31493827507ce1aa525c.png 8b79c8fa6eebe7bd7c6f752d2a7f830e.png 5.小刚一家三口人照全家福,变换他们的位置,可以照出几种不同的照片? 6.用下面的人民币可以表示出多少种不同的币值? f4b111c1def73d6950125d323ced8485.png 参考答案 一、1.6 46、48、64、68、84、86 【点拨】按“首位确定法”或“交换位置法”有顺序思考。 2.3【点拨】可以用“连线”的方法,或列式为:2+1=3(次)。 3.3 4.4 5.2 二、1.③ [点拨] 列式为3×3=9(种)。 2.③ 3.③ 三、1.行孙者 行者孙 者孙行 者行孙 2. bb962ef48d23252b6dc17a908e69e230.png 答:一共有 6种不同的分法。 点拨:不想写那么多文字,可以把三种糖标上序号。 3.2×2=4(种) 答:共有 4种搭配方法。 4.①②、①③、①④、②③、②④、③④ 6种 答:有 6种不同的搭配方法。 5.2×3=6(种) 答:可以照出 6种不同的照片。 6.一张:3种 两张:3种 三张:1种 3+3+1=7(种) 答:可以表示出7种不同的币值。

9ece72f89a1268f147243a61824beab3.png

【练习二】

一、填空。(每题3分,共24分)

1.钟面上有(  )个大格、(  )个小格,一个大格里有(  )个

小格。

2.1时=(  )分  半小时=(  )分  一刻钟=(  )分

3.分针从12走到4,走了(  )分,时针从12走到5走了(  )时。

4.时针从2开始绕了一圈走回2,走了(  )时。

5.分针从3走到9走了(  )分,时针从4走到8走了(  )时。

6.2名女同学和2名男同学进行乒乓球比赛,每两人都要赛一场,一共要赛(  )场。

7.用1、6、8三个数能组成(  )个不同的两位数。

8.用9585344fb2fd7e42feb9d4e78515cdd9.png2bc1e907b62578a171ee8693d7c10515.png8814e36be62cd10ec086dedc3b577a3c.png三张数字卡片能摆成(  )个不同的两位数,其中最大的是(  ),最小的是(  )。

二、选择。(将正确答案的序号填在括号里;每题2分,共10分)

1.有1件上衣,3条不同的裤子,共有(  )种不同的穿法。

① 2② 3③ 4

2.时针在7和8之间,分针指着9,这时的时刻是(  )。

① 7:45  ② 8:45  ③ 8:09

3.乐乐周六上午9:00开始写作业,然后看动画片《熊出没》,       12:00开始吃午饭。乐乐可能在(  )看动画片《熊出没》。

① 8:30  ② 10:30  ③ 12:30

4.有4、6、9三个数,任意选取其中两个数求和,得数有(  )种可能。

① 3  ② 4  ③ 6

5.在红、黄、蓝三种颜色中任选两种在长方形纸的两面(分正、反面)分别涂上不同的颜色,有(  )种可能的情况。

① 5  ② 6 ③ 3

8b8f8dc0d6eb1c728aa224dd6c90fb37.png三、下面小动物的说法对吗?对的画“√”错的画“×”,并改正。(15分)

1.

(  )________

a088ceb567bd10961d9d9b7314a4c684.png2.

(  )________

294f5672c09336ee9fcb4a67a8ce4916.png3.

(  )________

88eabc04b7fb398b6d67b6705c72a439.png4.

(  )________

c6cf41f7302b4248a480742de8fe7291.png5.

                                  (  )________

四、下面是乐乐的活动时间表,请连一连。(8分)

时间

8:00~8:30

8:35~9:00

9:10~9:40

10:10~11:00

活动

读书

做作业

打球

看电视

8a3abd8cda5bccf58ceec942b0f3c10e.png    4f6c62a432dfe52b4a4e36642fb2e7b3.png    a2fb6ba25541cbf032b78bd606ebdbf0.png    16b3a06603d9e70ab775da95bbe06014.png

五、有5角,10元,20元的纸币各一张,一共可以组成多少种不同的币值?请写出来。(9分)

28640e4f463929379060ec86e31bb7d7.png

六、有3个数4、6、9,任选其中2个求出积,得数有几种可能?请写出来。(6分)

七、先写出前三个钟面的时刻,再按规律画出最后一个钟面的时针和分针并写出最后一个钟面的时刻。(10分)

80e828196fe8b7f7d6914d49284964e9.png    2ac7784679040c950c2d921f32fe309b.png    b1b2c807c082d68ce459540035e5d260.png    d656eaed34f71168f25b437a358523f3.png

________     ________      ________   ________

八、解决问题。(每题6分,共18分)

1.学校春季运动会时,二(1)班和二(2)班参加跳绳的男生有46人,女生有27人,这两个班共有多少人参加跳绳?其中二(1)班有38人,二(2)班有多少人?

2.一盒牙刷有红、黄、蓝、绿4种颜色,每种颜色各5把,一盒有几把牙刷?

3.每张桌子可以坐6人,如果再来4人就坐满5张桌子,请问原来有几人。

参考答案

一、1.12 60 5 2.60 30 15

3.20 5 4.12 5.30 4

6.6 7.6 8.4 98 80

二、1.② 2.① 3.② 4.① 5.②

三、1.× 9:55 2.× 10:05

3.× 4:20 4.√ 5.× 3:10

四、读书连第三个钟表 做作业连第一个钟表 打球连第四个钟表 看电视连第二个钟表

五、一共可以组成7种不同的币值。分别为5角,10元,20元,10元5角,20元5角,30元,30元5角。

六、4×6=24 6×9=54 4×9=36得数有3种可能,分别为24,54,36。

七、7:30 7:40 7:50 8:00 画指针略。

八、1.一共:46+27=73(人)

二(2)班:73-38=35(人)

2.4×5=20(把)

3.5×6-4=26(人)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值