判断圆和线相切java_通过直线与圆交点数,轻松判断直线与圆关系,相离、相交、相切...

初中数学,以直线与圆交点个数来判断,直线与圆有3种位置关系。相离,直线与圆无交点;相切,直线与圆有一个交点;相交,直线与圆有两个交点。同样,我们也可以通过直线与圆心的距离来判断直线与圆的位置关系,那下面就为大家介绍一下直线与圆的位置关系。

150743771_1_20181228100400966

打开今日头条,查看更多图片

相离:就是直线与圆点的距离大于半径,与圆无交点。

相切:就是直线与圆点的距离等于半径,只有一个交点。

相交:就是直线与圆点的距离小于半径,与圆有两个交点。

150743771_2_2018122810040160

直线与圆相切是直线与圆的一种特殊的位置关系,那么直线与圆相切有哪些性质特点呢。

1.直线与圆相切,那么就有直线与过切点的半径垂直。

2.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

下面就列举几道相关知识点例题。

例题一:如图,四边形ABCD是⊙O的外切等腰梯形,其周长为40,则梯形ABCD的中位线长为______.

150743771_3_20181228100401200

解析:设等腰梯形ABCD与圆相切点分别为E,F,G,H,如图所示

150743771_4_20181228100401247

由切线长定理,我们可以得出

AE=AG,BE=BH,CH=CF,DF=DG

∴AD+BC=20

又∵梯形的中位线等于1/2(上底+下底)

∴梯形的中位线长为10

小结:本题的解题思路主要是利用里,圆外一点作圆的两条切线,那么这两条切线长相等。

150743771_5_20181228100401294

例题二:已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于

150743771_6_20181228100401450

点E,AE=2,ED=4.

(1)求证:AF是⊙O的切线;

(2)求AB的长.

解析:1.连线OA,因为A为BC弧中点

∴OA⊥BC

∵AF//BC,

∴OA⊥FA FA为圆的切线。

2.∵∠BAE=∠BAD=90°

A为BC弧中点

∴ ∠ADB=∠BAC

∴△ABE∽△ABD

AB:AD=AE:AB

AB=2√3

150743771_7_20181228100401544

关于直线与圆的位置关系相关的知识点,今天就为大家分享到这里,希望这些内容对大家学习有用,预祝大家学业有成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值