计算机视觉三维重建精简课件教程

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:计算机视觉专注于从二维图像恢复三维信息,是信息技术的重要领域。本课件“计算机视觉之三维重建篇(精简版)”深入讲解了计算机视觉基础、三维几何、特征检测与匹配、单视图和多视图几何理论、立体视觉、结构化光与深度相机技术、稀疏与密集重建、尺度恢复和SLAM技术。这些内容旨在帮助学习者掌握提取图像中三维信息的技能,并为计算机视觉项目打下坚实的基础。

1. 计算机视觉基础概念

计算机视觉(Computer Vision)是研究如何使机器“看”的科学与技术,它涉及到从图像或视频中提取信息并实现理解。计算机视觉的核心任务之一是使计算机能够解释周围环境的视觉信息,例如,识别人脸、理解行为、估计场景深度等。本章将介绍计算机视觉的一些基础概念,为读者建立一个坚实的知识基础。

计算机视觉的基础概念包括:

  • 图像与视频处理 :涉及图像获取、存储、压缩、增强等预处理步骤,为后续的分析与理解打下基础。
  • 特征提取 :识别图像中的关键信息点,如边缘、角点、线条和纹理等,作为物体识别和场景理解的依据。
  • 物体识别与分类 :通过机器学习算法对提取的特征进行分析,实现对物体种类的识别和分类。

在后续章节中,我们将逐步深入探讨计算机视觉的核心技术与方法,包括三维几何推断、特征检测与匹配、以及三维重建等。这些技术构成了计算机视觉领域的基础框架,并广泛应用于机器人导航、自动驾驶、医疗成像、安防监控等多个行业。

2. 三维几何与几何信息推断

2.1 三维空间的基本理论

2.1.1 三维坐标系的定义与性质

三维空间中坐标系的定义是构建和理解空间几何信息的基础。一个三维坐标系通常由三个相互垂直的轴(x轴、y轴、z轴)和一个原点组成,形成一个笛卡尔坐标系。在计算机视觉中,通常使用右手坐标系,即当右手的四个手指从x轴向y轴旋转时,拇指指向的方向为z轴的正方向。

三维坐标系的性质包括: - 线性:任意两点间的连线仍然是坐标系中的一条直线。 - 平面性:三点不共线时可确定一个平面。 - 体积性:四点不共面时可确定一个体积。

在计算机视觉应用中,坐标系的选择至关重要,因为它影响到后续的图像处理、物体定位以及场景理解等多个方面。例如,相机成像过程中,物体在现实世界中的三维坐标与成像平面上像素点的关系,就是通过相机坐标系与成像坐标系之间的转换来描述的。

// 示例:三维空间中的点P的坐标表示
P = (x, y, z)

2.1.2 几何形状的表示方法

在三维空间中描述物体的几何形状通常有多种表示方法,包括参数表示和隐式表示。参数表示如顶点坐标和面片列表,能直接给出几何体的边界信息,适用于建模和渲染等领域。隐式表示如体积体素和隐式方程,更适合于表示连续的形状信息,常用于计算几何和形状分析。

几何形状表示方法的一个重要方面是多边形网格表示。多边形网格由顶点、边和面组成,是计算机图形学中表示三维物体表面的常用方法。随着细分曲面技术的发展,网格可以变得非常平滑,接近于真实的曲面模型。

graph TD
A[三维坐标系] -->|定义| B[原点]
A -->|定义| C[三轴]
C -->|x轴| D[水平轴]
C -->|y轴| E[垂直轴]
C -->|z轴| F[深度轴]
D --> G[左负右正]
E --> H[下负上正]
F --> I[远负近正]

2.2 几何信息推断技术

2.2.1 深度感知与立体视觉

深度感知是三维视觉的基础,立体视觉系统通过模拟人眼获取深度信息的原理来实现。它依赖于两个或多个相机从不同视角拍摄同一场景,通过比较视差(即同一场景点在不同图像中的位置差异)来计算每个点的深度信息。

立体视觉系统的关键是摄像机的标定和视差的计算。摄像机标定是为了获取相机内外参数的过程,这些参数对于后续的视差计算至关重要。视差计算通常涉及到特征匹配和优化算法,如动态规划、图割等,目的是在保证精度的同时减少计算量。

// 示例:视差计算公式
视差 = X_L - X_R
2.2.2 光线追踪与射线投射

光线追踪是一种通过模拟光线传播过程来生成图像的技术。在这种方法中,光线从虚拟相机发出并穿过像素点,之后与场景中物体的表面相交,从而计算出交点的颜色和亮度信息。

射线投射是光线追踪中的一种重要技术,它通过向三维空间发射射线并检测这些射线与场景中物体的相交情况来重建物体的形状和深度信息。这种方法能够提供非常精确的深度信息,但同时计算量很大,需要借助高性能计算设备。

graph LR
A[摄像机] -->|发射光线| B[场景]
B --> C[物体表面]
C --> D[交点]
D -->|计算颜色| E[像素值]

总结

在第二章中,我们深入探讨了三维空间的基本理论和几何信息推断技术。首先介绍了三维坐标系的定义与性质,以及几何形状的表示方法,从而为理解后续的视觉重建技术打下了基础。接着,我们深入了解了深度感知与立体视觉的基本原理,以及光线追踪与射线投射技术在三维空间中的应用,这些技术为获取精确的深度信息提供了可能。

在计算机视觉领域,这些理论知识是构建复杂视觉系统不可或缺的基础。通过摄像机标定、特征匹配、视差计算和光线追踪等方法,可以实现从二维图像到三维空间的转化,进而实现物体识别、场景重建等高级视觉任务。随着技术的不断进步,这些基础理论和方法也在不断进化,以适应更加复杂和精确的应用需求。

3. 特征检测与匹配算法

在计算机视觉领域中,特征检测与匹配是构建场景理解的关键技术之一。它们涉及到从图像中提取关键信息点,并将不同视角或不同时间点拍摄的图像联系起来,用于对象识别、图像拼接、三维重建等任务。

3.1 特征检测算法概述

3.1.1 特征检测的基本原理

特征检测是指从图像中识别出具有独特信息的位置,这些位置对光照、噪声、视点变化等保持不变性,是图像分析和理解中不可或缺的一部分。特征检测的关键在于找到那些在图像空间中具有区分性的点,如角点、边缘、纹理等。

特征点的选取基于局部图像的特征,常见的特征检测方法有SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(Oriented FAST and Rotated BRIEF)等。这些算法通过检测图像的局部不变性,来保证在图像变换后依然能够被准确地检测和匹配。

3.1.2 常用的特征检测算法比较

SIFT算法由Lowe在2004年提出,以其优秀的尺度和旋转不变性而闻名。但SIFT算法存在计算量大和专利限制的问题。为了克服这些问题,学者们相继提出了SURF和ORB等改进算法。

SURF是基于Hessian矩阵的快速响应特征检测算法,它通过简化SIFT算法以提高速度,但是其专利问题同样不容忽视。ORB则是一种简洁的特征检测和描述符,它的计算速度远远快于SIFT和SURF,尽管在某些情况下可能牺牲了一些性能。

3.2 特征匹配策略

3.2.1 匹配算法的选择与适用场景

特征匹配是指将两个图像中的特征点进行对应,是最基本的图像分析任务之一。选择合适的匹配算法对于保证图像分析结果的准确性和稳定性至关重要。

在实际应用中,根据具体需求选择不同的特征匹配策略。例如,对于需要高精度和计算资源的场景,SIFT是不错的选择;对于需要在计算性能和精度之间取得平衡的场景,则SURF或ORB可能更为适合。匹配策略通常包括最近邻匹配、最近邻加次近邻匹配(例如FLANN算法)等。

3.2.2 匹配过程中的误匹配问题

在特征匹配过程中,误匹配是一个不可避免的问题。误匹配是指错误地将一个图像中的特征点与另一个图像中并不对应的特征点进行匹配。这会对后续的图像分析任务造成严重影响。

为减少误匹配,通常采用RANSAC(随机抽样一致性)算法进行外点剔除。RANSAC算法通过迭代的方式在数据中选择出在一定容忍度内的一致子集,从而提高匹配的准确性。例如,在进行相机标定或三维重建时,RANSAC可以帮助我们过滤掉错误的匹配点对。

下面是一个使用Python代码的简单例子,用于展示特征检测与匹配的过程:

import cv2
from matplotlib import pyplot as plt

# 读取两张图片
img1 = cv2.imread('image1.jpg', 0)  # 查询图像
img2 = cv2.imread('image2.jpg', 0)  # 训练图像

# 初始化ORB检测器
orb = cv2.ORB_create()

# 使用ORB找到关键点和描述符
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)

# 创建匹配器
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

# 进行匹配
matches = bf.match(des1, des2)

# 按照距离排序
matches = sorted(matches, key=lambda x: x.distance)

# 绘制前10个匹配项
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2)

plt.imshow(img3)
plt.show()

上述代码首先读取两张待匹配的图片,然后初始化ORB特征检测器,并提取关键点和描述符。接着,使用BFMatcher进行特征点匹配,并通过距离排序筛选出最优匹配对。最后,使用 cv2.drawMatches 函数将匹配结果显示出来。

通过以上步骤,我们可以实现两张图像间的初步特征匹配。然而,在实际应用中,为了获得更鲁棒的匹配结果,还需进一步采用更复杂的策略,如使用RANSAC算法剔除误匹配。

在分析和处理特征匹配时,需要对特征检测算法有深刻理解,同时掌握匹配策略和误匹配处理技术。只有这样,才能在复杂多变的图像环境中,准确无误地完成特征匹配任务,为后续的图像分析提供坚实基础。

4. 单视图与多视图重建技术

4.1 单视图重建技术

单视图重建技术通常指利用单个二维图像来重建出物体或场景的三维模型。这一领域在计算机视觉中具有重大意义,因为它允许从仅有的二维信息推断出三维结构,这在现实世界应用中非常重要。比如,利用单张照片就能重建物体的几何形状,这项技术对于虚拟现实和增强现实等应用领域有着直接的影响。

4.1.1 单目视觉的三维重建原理

单目视觉的三维重建依赖于从二维图像中恢复深度信息。单目重建技术的核心在于深度的推断,这通常涉及到对场景中物体大小、物体间的相对位置以及已知尺寸物体的识别等线索的利用。在算法层面,这些线索转化为对图像中物体或特征点的尺度和距离的估计。为了实现这一点,通常需要使用一种称为“深度学习”的方法,借助深度神经网络模型从单张图片中推断出深度图。

深度学习方法的一个主要优点是,它们能够从大量数据中自动学习到重建三维结构的复杂模式。例如,卷积神经网络(CNN)可以训练来估计从图像中得到的深度信息,而不是依赖传统的几何计算。但这种方法的一个缺点是需要大量标记数据进行训练,而收集这些数据可能既耗时又昂贵。

4.1.2 单视图重建的应用实例

一个应用实例是在移动平台上实现的室内场景重建。随着智能手机硬件能力的增强和深度学习算法的优化,单张图片即可实现对室内布局的三维重建。通过手机相机拍摄房间照片,利用深度学习模型可以识别墙壁、家具等物体,并重建它们在三维空间的位置和大小。这样的功能可以用于房屋设计、家具布局规划、室内导航等多个场景。

4.2 多视图几何与图像关系计算

多视图重建技术依赖于从多个不同视角获取的二维图像,以形成三维模型。其基本原理是,通过分析不同视角下同一物体或场景的成像差异,推断出物体的三维结构和相机的运动轨迹。

4.2.1 相机标定与校正

为了确保多视图重建的精度,相机标定和校正是重要步骤。标定的目的是获取相机的内参(焦距、主点坐标等)和外参(相机姿态)。内参能够帮助我们将像素坐标转换为相机坐标系中的点,而外参则将这些点转换到世界坐标系中。通常标定过程涉及到拍摄已知几何形状的标定物,通过数学模型计算出相机的精确参数。

例如,常用的标定物是棋盘格,通过分析棋盘格在图像中的成像,可以计算出相机的焦距、畸变参数等。校正过程则是将相机在拍摄时可能出现的畸变影响进行补偿,确保重建出的三维模型不会因为畸变而失真。

4.2.2 图像的几何变换与配准

图像配准是多视图重建中的关键步骤,它涉及将多个不同视角下的图像对齐到统一的坐标系统中。在这个过程中,需要考虑旋转、缩放、平移以及可能的仿射变换。图像配准不仅涉及到几何变换,还包括图像间的特征匹配,这需要考虑到光照变化、遮挡等问题。

一个常用的配准方法是基于特征点的配准。首先使用如SIFT、SURF或ORB等特征检测算法来提取图像中的关键点,并为这些关键点计算描述符。之后,利用描述符间的相似性来匹配不同图像中的同一点。配准之后,可以使用三维重建算法,如深度图融合、光束平差法(bundle adjustment)等来生成最终的三维模型。

4.3 本章总结

单视图和多视图重建技术为计算机视觉领域带来了新的挑战和可能性。单视图重建通过深度学习技术实现了从二维图像到三维模型的转换,尽管依赖大量数据和高算力,但已成功应用于多个行业。相对地,多视图重建凭借其使用多个视角的优势,能够提供更高精度的三维重建结果,而相机标定与图像配准的精确性是其成功的关键。通过不断优化这些技术,它们将能够为虚拟现实、增强现实、机器人导航、文化遗产数字化等领域提供更强大的支持。

5. 深度信息的计算与应用

深度信息是计算机视觉领域中的重要数据,它能够提供物体在三维空间中的实际位置信息。这一章,我们将探讨深度信息的计算方法以及如何在不同的应用场景中应用这些技术。

5.1 立体视觉深度信息计算

立体视觉技术是一种模仿人类双眼视觉机制的方法,通过两台摄像机从略微不同的角度拍摄同一场景,利用视差原理计算深度信息。

5.1.1 立体视觉系统的工作原理

立体视觉系统的工作原理基于视差(disparity),即同一物体在两个摄像机成像平面上的位置差异。视差越大,表明物体距离摄像机越近;视差越小,物体距离摄像机越远。通过测量视差,可以利用简单的三角关系计算出物体的深度信息。

上图展示了立体视觉系统如何利用两个摄像机的视角差异计算深度信息。为了实现这一过程,系统需要进行摄像机标定、图像矫正、特征匹配和视差图生成等步骤。

5.1.2 深度图的生成与应用

深度图的生成是立体视觉系统的核心任务。深度图是一个二维矩阵,其中的每个像素值表示对应图像点的深度信息。生成深度图需要通过以下步骤:

  1. 摄像机标定 :确定摄像机内部参数和相对位置关系,为后续的图像矫正和深度计算提供依据。
  2. 图像矫正 :通过旋转和缩放操作,使两个摄像机拍摄的图像对齐,消除垂直视差。
  3. 特征匹配 :在左右两个图像中寻找匹配点,这是计算视差的基础。
  4. 视差计算 :根据匹配点的位置差异计算每个像素点的视差值。
  5. 深度图生成 :利用下面的公式将视差图转换为深度图:
# 假设baseline是摄像机基线距离,focal_length是摄像机焦距
# disparity是视差值,D(x,y)是深度图中(x,y)位置的深度值
D(x, y) = (baseline * focal_length) / disparity(x, y)

生成的深度图可以应用于多种场景,比如:

  • 自动驾驶 :深度信息帮助车辆感知周围环境,进行避障和导航。
  • 机器人视觉 :使机器人能够理解周围三维空间,进行抓取和移动物体。
  • 增强现实 :将虚拟物体融合到现实世界中,深度信息帮助确定合适的位置。

深度图的精确性受到摄像机标定精度、特征匹配质量等因素的影响。实际应用中,深度图可能需要进一步的平滑和优化处理来提高其质量和可用性。

5.2 结构化光和深度相机的应用

除了立体视觉外,结构化光和深度相机是获取深度信息的另外两种主流技术。

5.2.1 结构化光技术的原理与应用

结构化光技术通过向场景投射特定的光纹(如条纹光或点阵光),利用光纹在物体表面的变形来计算深度信息。系统通常包括一个光源、一个摄像机和一个或多个反射镜或扫描设备。

结构化光技术的工作流程如下:

  1. 光纹投射 :将特定的光纹投射到待测物体上。
  2. 图像捕获 :摄像机捕获带有光纹变形的场景图像。
  3. 相位计算 :通过图像处理技术获取光纹的相位变化。
  4. 深度计算 :将相位变化转换为深度信息,需要事先标定系统的参数。

结构化光技术的应用场景广泛,包括:

  • 三维扫描 :快速精确地获取物体的三维模型,适用于制造业和质量检测。
  • 面部识别 :在安全验证领域,通过捕捉人脸的深度信息提高识别的准确性。

结构化光技术受到环境光干扰较大,且硬件设备成本较高。然而,随着技术的进步,这些问题正在逐渐得到解决。

5.2.2 深度相机的种类与性能对比

深度相机是一种集成了深度感知能力的成像设备。根据工作原理的不同,深度相机可分为以下几类:

  • 激光雷达(LiDAR)相机 :使用激光脉冲测量场景与物体之间的距离。
  • ToF(Time-of-Flight)相机 :测量光脉冲发射到返回的时间来计算距离。
  • 立体视觉相机 :使用两个或多个摄像机从不同角度捕获图像并计算深度信息。

深度相机的关键性能指标包括:

  • 分辨率 :相机能够区分的最小细节大小。
  • 测量范围 :相机能够有效测量的最远距离。
  • 测量精度 :测量值与真实值之间的差异。
  • 刷新率 :相机每秒捕获图像的帧数。

不同的深度相机在不同场景下各有优势。例如,ToF相机适合移动设备应用,因为它们尺寸小、功耗低;而激光雷达相机在户外和长距离测量应用中表现更好。

深度相机技术的持续发展推动了计算机视觉领域的新应用,从智能手机到工业自动化,深度感知正变得越来越重要。

5.3 深度信息应用的优化与展望

深度信息的计算和应用正在不断优化,以应对实际使用中遇到的各种挑战。随着技术的进步,深度信息的获取变得更加精准和高效。

5.3.1 立体视觉系统的优化

立体视觉系统的关键优化方向包括:

  • 特征提取与匹配算法的改进 :使用更先进的机器学习算法提高特征匹配的准确性,减少误匹配。
  • 深度学习的应用 :利用深度学习技术进一步提升深度计算的准确性和鲁棒性。
  • 硬件的升级 :使用高速、高分辨率的摄像机和图形处理单元(GPU)提升系统的处理速度。

5.3.2 深度相机技术的发展

深度相机技术发展的前沿趋势包括:

  • 集成化的深度感知方案 :将深度相机集成到多种终端设备中,如智能手机、虚拟现实头盔和安全监控系统。
  • AI芯片 :开发专用的AI芯片,以实现更快的深度信息处理和降低功耗。
  • 融合技术 :将深度相机与其他传感器(如IMU、GPS)的数据融合,以提供更全面的环境感知。

随着技术的成熟和应用范围的扩大,我们可以预见深度信息将在未来几年内对自动驾驶、机器人技术、虚拟现实和增强现实等领域产生深远的影响。

通过本章节的介绍,我们可以了解到深度信息计算的多种技术和它们的应用场景。立体视觉系统提供了通过图像视差获取深度信息的途径,而结构化光和深度相机技术为获取深度信息提供了不同的硬件解决方案。这些技术的持续优化和未来发展,将进一步推动计算机视觉领域的创新和发展。

6. 三维重建的进阶技术

在计算机视觉领域,三维重建是极具挑战性的课题之一。随着技术的发展,三维重建已由基础的单视图和多视图重建,发展到了涉及更加复杂算法和策略的进阶技术。本章节将深入探讨稀疏重建与密集重建方法,尺度恢复与三维比例准确性,以及SLAM技术在三维重建中的应用。

6.1 稀疏重建与密集重建方法

6.1.1 稀疏重建的特点与方法

稀疏重建旨在从图像序列中提取少量但关键的三维点信息,这些点通常是图像特征点或角点,具有较高的可追踪性和稳定性。稀疏重建的优点是计算效率较高,尤其适用于计算资源有限的移动设备或实时应用。

在技术实现上,常用的方法包括:

  • 基于特征点的重建方法(如SIFT, SURF)
  • 使用RANSAC算法剔除误匹配点
  • 利用图像序列间的特征匹配,使用PnP问题解算相机位姿
import cv2
# 示例:使用SIFT进行特征检测与匹配
sift = cv2.SIFT_create()

# 假设img1和img2为两个需要匹配的图像
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

# 创建FLANN匹配器
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)

# 使用KNN算法寻找最佳匹配
matches = flann.knnMatch(des1, des2, k=2)

6.1.2 密集重建的流程与效果评估

密集重建则尝试重建图像中尽可能多的点,生成一个稠密的三维点云。这种重建方式能够获取更加详细的三维信息,但计算代价相对较高。密集重建的流程一般包括:

  • 基于像素的光度一致性检查,如半全局匹配(SGM)算法
  • 利用深度学习方法提取图像的深度信息,如深度卷积网络(DCN)
  • 使用多视图立体视觉方法进行深度信息融合

评估密集重建的效果通常需要考虑以下因素:

  • 点云的密度和完整性
  • 重建模型的几何精度和纹理真实性
  • 算法的运行时间及对硬件的依赖程度

6.2 尺度恢复与三维比例准确性

6.2.1 尺度恢复的重要性与策略

在三维重建中,尺度恢复是确保重建模型尺寸与实际物体尺寸一致的关键步骤。没有正确的尺度信息,即使重建的模型在形状上准确,也不能在现实世界中得到正确的应用。例如,在机器人导航和增强现实应用中,尺度信息的准确性至关重要。

常见的尺度恢复策略包括:

  • 使用已知尺寸的物体作为参照物
  • 利用空间中其他传感器提供的尺度信息
  • 对重建过程中的深度图进行全局缩放校正

6.2.2 提高三维重建准确性的方法

为了提高三维重建的准确性,可以采取以下措施:

  • 对输入图像进行高质量预处理,如去噪、亮度均衡等
  • 选择精确度和鲁棒性更高的特征匹配和重建算法
  • 应用机器学习方法进行特征点的优化和深度图的后处理

6.3 SLAM技术在三维重建中的应用

6.3.1 SLAM技术概述与分类

SLAM(Simultaneous Localization and Mapping)即同时定位与建图,是一种使机器人或移动设备能够在未知环境中自主导航的技术。SLAM技术可细分为基于滤波的SLAM,如EKF-SLAM,以及基于图优化的SLAM,如g2o和GTSAM。

SLAM的关键点在于:

  • 传感器数据的实时处理和融合
  • 环境特征的提取和跟踪
  • 位姿的估计和地图的更新

6.3.2 SLAM在三维重建中的实例分析

在三维重建领域,SLAM技术尤其适用于动态场景重建,例如无人机或移动机器人在执行任务时的实时地图构建。SLAM系统能实时更新环境地图,为三维重建提供连续的位姿信息和环境几何信息。

实例分析中,可以重点关注:

  • SLAM系统是如何处理传感器数据,如使用视觉SLAM(VSLAM)或激光雷达SLAM(LIDAR-SLAM)
  • 三维重建系统与SLAM系统结合的方式
  • 实际应用中,SLAM对提高三维重建精度和效率的贡献
graph LR
    A[开始] --> B[图像采集]
    B --> C[特征提取]
    C --> D[SLAM定位与建图]
    D --> E[三维点云生成]
    E --> F[模型优化]
    F --> G[完成三维重建]

通过本章节的介绍,读者应能够理解并掌握三维重建进阶技术的关键方法和应用实例,为进一步深入研究或实际应用计算机视觉技术奠定坚实的基础。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:计算机视觉专注于从二维图像恢复三维信息,是信息技术的重要领域。本课件“计算机视觉之三维重建篇(精简版)”深入讲解了计算机视觉基础、三维几何、特征检测与匹配、单视图和多视图几何理论、立体视觉、结构化光与深度相机技术、稀疏与密集重建、尺度恢复和SLAM技术。这些内容旨在帮助学习者掌握提取图像中三维信息的技能,并为计算机视觉项目打下坚实的基础。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值