linux内存管理红黑树,linux 内存管理之红黑树

linux 内存管理之红黑树

谨以此文纪念过往的岁月。

我们可以将经常需要被读取的数据定义为 __read_mostly类型, 这样Linux内核被加载时,该数据将自动被存放到Cache中,以提高整个系统的执行效率

一.红黑树

1.1什么是红黑树

红黑树是满足一定特征的二叉树,其本质还是二叉树。

一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:

1)每个结点要么是红的,要么是黑的。

2)根结点是黑的。

3)每个叶结点,即空结点(NIL)是黑的。

4)如果一个结点是红的,那么它的俩个儿子都是黑的。

5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

其每一个红黑树的节点包括三个参数node_color,node_left,node_right。

http://blog.csdn.net/v_JULY_v/archive/2010/12/29/6105630.aspx 博文详细的讲述了红黑树的操作。

1.2linux中如何实现红黑树

1.2.1红黑树结构体

__attribute__((aligned(sizeof(long))));   --声明结构体long类型对齐。

红黑根节点描述

struct rb_root

{

struct rb_node *rb_node;

};

红黑树节点描述

struct rb_node

{

unsigned long  rb_parent_color;     --保存节点color同时保存父节点的指针值

#define RB_RED  0

#define RB_BLACK 1

struct rb_node *rb_right;   --右子

struct rb_node *rb_left;    --左子

}

设置父节点。

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)

{

rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;

}

设置节点颜色

static inline void rb_set_color(struct rb_node *rb, int color)

{

rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;

}

1.2.2红黑树的操作

红黑树的最主要特征在于其颜色满足特定的性质。普通的节点添加,极有可能破坏红黑树的性质,所以在添加红黑树节点时,需要将整个红黑树的颜色进行调整。

下面以rb_insert_color为例。

在理解下面的程序前要先理解两个函数,即红黑树的左旋和右旋。

左旋:

uid-24517893-id-125542.html

对照上图可以更好的理解下面的程序。将node设置为pivot,root不管。

static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)

{

struct rb_node *right = node->rb_right;      --right = Y

struct rb_node *parent = rb_parent(node);    --parent = P

if ((node->rb_right = right->rb_left))    --pivot的右子设置为P的左子即pivot->rb_right = b

rb_set_parent(right->rb_left, node);    --同时将b->parent 设置为pivot

right->rb_left = node;                    --将pivot设置为Y的左子

rb_set_parent(right, parent);             --设置Y的parent为P

if (parent)

{

if (node == parent->rb_left)            --如果pivot为P的左子

parent->rb_left = right;              --则P的右子设置为Y

else

parent->rb_right = right;             --否则P的左子设置为Y

}

else

root->rb_node = right;

rb_set_parent(node, right);             --设pivot的parent为Y

}

对于右旋参照左旋即可了,这两个旋转类似。

uid-24517893-id-125542.html

static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)

{

struct rb_node *left = node->rb_left;

struct rb_node *parent = rb_parent(node);

if ((node->rb_left = left->rb_right))

rb_set_parent(left->rb_right, node);

left->rb_right = node;

rb_set_parent(left, parent);

if (parent)

{

if (node == parent->rb_right)

parent->rb_right = left;

else

parent->rb_left = left;

}

else

root->rb_node = left;

rb_set_parent(node, left);

}

关于左旋和右旋都是为了保证平衡二叉树的性质不变,即是通过左旋和右旋来保证红黑二叉树的第五条性质满足。

红黑二叉树的添加跟普通的二叉树的添加类似。不过在添加节点后需要对节点的颜色进行调整,甚至对树的结构进行调整,来满足红黑树的性质。

在博文http://blog.csdn.net/zhongjiekangping/archive/2010/05/26/5624503.aspx中对红黑树插入的情况做了详细的描述。

b79cbd06942368e6485d8f661e5f26b7.png

4ba37913d5a2cda400514e677d3a10da.png

d34dbd255f2a74451010fa331615c5c7.png

将下面函数对比上三幅图即可。

void rb_insert_color(struct rb_node *node, struct rb_root *root)

{

struct rb_node *parent, *gparent;   --一个为父节点,一个为祖父节点

while ((parent = rb_parent(node)) && rb_is_red(parent))  --从node获得父节点指针值,并判断父节点是否为红色

{

gparent = rb_parent(parent);

if (parent == gparent->rb_left)

{

{

register struct rb_node *uncle = gparent->rb_right;

if (uncle && rb_is_red(uncle))

{

rb_set_black(uncle);

rb_set_black(parent);

rb_set_red(gparent);

node = gparent;

continue;

}

}

if (parent->rb_right == node)

{

register struct rb_node *tmp;

__rb_rotate_left(parent, root);

tmp = parent;

parent = node;

node = tmp;

}

rb_set_black(parent);

rb_set_red(gparent);

__rb_rotate_right(gparent, root);

} else {

{

register struct rb_node *uncle = gparent->rb_left;

if (uncle && rb_is_red(uncle))

{

rb_set_black(uncle);

rb_set_black(parent);

rb_set_red(gparent);

node = gparent;

continue;

}

}

if (parent->rb_left == node)

{

register struct rb_node *tmp;

__rb_rotate_right(parent, root);

tmp = parent;

parent = node;

node = tmp;

}

rb_set_black(parent);

rb_set_red(gparent);

__rb_rotate_left(gparent, root);

}

}

rb_set_black(root->rb_node);

}

在理解红黑二叉树后,再来理解内存管理。在linux中虚拟内存的vma采用红黑树的结构来管理。这也是为什么要去理解红黑树的结构。

二.虚拟内存管理

在start_kernel中有一段关于vma的初始化

vmalloc_init -> __insert_vmap_area

将已有的vma添加入管理。

static void __insert_vmap_area(struct vmap_area *va)

{

struct rb_node **p = &vmap_area_root.rb_node;

struct rb_node *parent = NULL;

struct rb_node *tmp;

while (*p) {            --查询适合的插入点

struct vmap_area *tmp;

parent = *p;

tmp = rb_entry(parent, struct vmap_area, rb_node);

if (va->va_start < tmp->va_end)

p = &(*p)->rb_left;

else if (va->va_end > tmp->va_start)

p = &(*p)->rb_right;

else

BUG();

}

rb_link_node(&va->rb_node, parent, p);  --将节点插入

rb_insert_color(&va->rb_node, &vmap_area_root);  --调整红黑二叉树。

tmp = rb_prev(&va->rb_node);

if (tmp) {

struct vmap_area *prev;

prev = rb_entry(tmp, struct vmap_area, rb_node);

list_add_rcu(&va->list, &prev->list);

} else

list_add_rcu(&va->list, &vmap_area_list);

}

上面是vmalloc_init。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值