计算机将图像数字化的原理,图像数字化

图像数字化涉及采样和量化两个关键步骤。采样是将空间上连续的图像离散化,量化则是对灰度级进行离散化处理。通常选择2的整数次幂作为采样点数和量化级别,以满足重建图像的要求。在实际应用中,采样点数和量化比特数的选取取决于图像内容和应用需求,以达到最佳的图像质量和数据效率。
摘要由CSDN通过智能技术生成

[编辑]

什么是图像数字化

一幅黑白静止平面图像(如照片)中各点的灰度值可用其位置坐标(x,y)的函数f(x,y)来描述。显然f(x,y)是二维连续函数。有无穷多个取值。这种用连续函数表示的图像无法用计算机进行处理,也无法在各种数字系统中传输或存储。必须将代表图像的连续(模拟)信号转变为离散(数字)信号。这样的变换过程,称为图像数字化。

[编辑]

图像数字化的内容

图像数字化的内容包括两个方面:采样和量化。

图像在空间上的离散化称为采样。即使空间上连续变化的图像离散化。也就是用空间上部分点的灰度值来表示图像。这些点称其为样点(或像素、像元、样本)。一幅图像应取多少样点呢?其约束条件是:由这些样点,采用某种方法能够正确重建原图像。采样的方法有两类:一类是直接对表示图像的二维函数值进行采样。即读取各离散点上的信号值。所得结果就是一个样点值阵列。所以也称为点阵采样。另一类是先将图像函数进行某种正交变换,用其变换系数作为采样值,故称为正交系数采样。

对样点灰度级值的离散化过程称为量化。也就是对每个样点值数码化,使其只和有限个可能电平数中的一个对应,即使图像的灰度级值离散化。量化也可以分为两种:一种是将样点灰度级值等间隔分档取整,称为均匀量化;另一种是不等间隔分档取整,称为非均匀量化。因为都要取整,故量化也常称为整量或整量化过程。

假定一幅图像取M*N个样点,对样点值进行Q级分档取整。那么对M,N和Q如何取值呢?

首先,M,N,Q一般总是取成2的整数次幂,如Q = 2b,b为正整数。通常称为对图像进行b比特量化。M,N可以取成相等,也可以不相等。若取相等,则图像矩阵为方阵,分析运算方便些。取不等的例子如陆地卫星图像就因实际需要而取成2340*3240。

其次,关于M,N,b(或Q)数值大小的确定。对b来讲,取值越大,重建图像失真越小,若要完全不失真重建原图像,b必须取无穷大,否则一定存在失真。这就是所谓量化误差。一般供人眼观察的图像,由于人眼对灰度分辨能力有限,用5-8比特量化就可以了。而卫星照片、航空照片等为了区别图像中灰度变化不大的目标,往往用8-12比特量化。对MyN的取值,主要依据是采样的约束条件。也就是在M*N大到满足采样定理的情况下,重建图像就不会产生失真,否则就会因采样点数不够而产生所谓混淆失真。为了减少表示图像的比特数,总是取MXN点数刚好满足采样定理。这种状态的采样即所谓奈奎斯特采样(如彩色电视编码技术等)。M*N常用的尺寸有512*512,256*256,64*64,32*32等。

再次,在实际应用中,如果给定了允许表示图像的总比特数M*N*b,对N*N和b的分配往往是根据图像的内容和应用要求以及系统本身的技术指标来选定。例如,若图像中有大面积灰度变化缓慢的平滑区域,如人头像特写照片等。则M*N采样点数可以少些,而量化比特数h多些。这样使重建图像灰度层次多些。若b太少,在图像灰度平滑区往往会出现“假轮廓”。反之,复杂的景物图像,如群众场面的照片等,量化比特数b可以少些而采样点数M*N要多些。这样不致丢失图像的细节。究竟M*N和b如何组合才能获

得满意的结果,很难讲出一个统一的方案。T.S.Huang研究了这个问题。他对三种不同特征的图像(一幅细节少的妇女头像特写照片,一幅中等细节摄影师工作照片,一幅包含大量细节的群众会场照片),改变其采样点数M*N和量化比特数b,分别进行图像质量的主观评价。总的结论是:不同的采样点数和量化比特数组合,可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值