在讨论直线与直线、直线与平面、平面与平面的平行、垂直等问题时,一个有效的思路是:明确直线、平面的方向向量、法向量,通过讨论这些向量的关系,来解决问题。在找到相关向量后,剩下的就是计算问题了;尤其是在解决是否平行和垂直问题时,往往这要比公理化的证明简单的多。
直线的法向量
定义:如果向量n与直线l垂直,则称向量n为l的法向量。
设直线l有法向量,且经过点,则点P在直线l上的充要条件:。
因为,所以直线的点法式方程为:
如果直线有一般方程:,若
A≠0,直线点法式:
在讨论直线与直线、直线与平面、平面与平面的平行、垂直等问题时,一个有效的思路是:明确直线、平面的方向向量、法向量,通过讨论这些向量的关系,来解决问题。在找到相关向量后,剩下的就是计算问题了;尤其是在解决是否平行和垂直问题时,往往这要比公理化的证明简单的多。
定义:如果向量n与直线l垂直,则称向量n为l的法向量。
设直线l有法向量,且经过点,则点P在直线l上的充要条件:。
因为,所以直线的点法式方程为:
如果直线有一般方程:,若
A≠0,直线点法式: