表格嵌套_vlookup+left函数嵌套如何运用,表格数据查询的另类用法

博客介绍了利用vlookup+left文本提取函数进行数据另类查询的方法。以根据手机号码判断运营商为例,说明单独用vlookup函数无法实现,需搭配left函数。还给出函数公式并解析,强调将left提取内容转为数字格式的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来学习一下vlookup函数的不一样的操作方式,如何利用vlookup+left文本提取函数进行数据的另类查询。

一:案例说明

e17d29a7fbe1d379563bf9359c8860d3.png

如上图所示,我们需要根据人员的手机号码,根据我们统计的运营商号码段来进行判断,确认人员的手机号码属于哪个运营商。这里我们单独用vlookup函数就实现不了,需要搭配left文本提取函数来进行操作。

二:操作方法

0a673dd9f8756f47697825c3cbf82ef9.png

函数公式:

=VLOOKUP(1*LEFT(B2,3),F:G,2,0)

函数解析:

1、这里我们通过left(B2,3)函数,来通过提取手机号码的前3位数字,然后利用vlookup函数来进行匹配查询;

2、vlookup函数的第一参数使用了1*LEFT(B2,3),前面乘了1的主要作用为将left提取的前三个数字,由文本格式调整为数字格式。因为left函数提取的内容为文本单元格,没有转换格式的情况下来查询对应运营商,因为两者格式不对结果会显示错误值,如下图所示:

83a98e1389d3195807ad869a985bb135.png

现在你学会如何利用vlookup与left函数进行搭配进行特殊的数据查询了吗?

更多函数视频课程:

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值