深度学习优化与调优技术课程解析

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本课程深入剖析深度学习中的关键概念,包括优化算法、超参数调优、正则化方法和学习率调度策略。旨在帮助学员通过编程实践掌握神经网络的优化技术,理解梯度下降变体、超参数优化方法(如网格搜索、随机搜索、贝叶斯优化和K折交叉验证)、正则化技术(包括L1/L2正则化、Dropout、早停法和数据增强)以及批量归一化和学习率调度的应用。学员将通过实战项目加深对这些技术的理解,并提升深度学习模型性能。 deeplearning.ai 编程解答:第二课

1. 深度学习关键概念

深度学习作为现代人工智能领域的核心分支,在各种复杂任务中展现出了前所未有的能力,如图像识别、语音识别和自然语言处理等。其关键概念包括神经网络、前向传播、反向传播以及激活函数等。这些术语可能对初学者来说有些抽象,但理解它们是掌握深度学习技术的必要步骤。

首先,神经网络是由大量的节点(或称为神经元)按层级结构组成的计算模型。这些神经元通过可训练的权重相互连接,并通过激活函数对输入数据进行非线性变换,从而使网络能够学习和模拟复杂的函数。

接着,前向传播是指信息在神经网络中从前到后的传递过程,直至输出层生成预测结果。反向传播则发生在训练阶段,通过计算预测值与实际值之间的误差,并沿着原路返回更新权重,以最小化误差函数。

激活函数在神经网络中起着至关重要的作用,它为神经网络引入非线性因素,使得网络能够学习到更加复杂的模式。常用的激活函数包括sigmoid、ReLU和tanh等。

理解这些基础概念是深入学习深度学习技术的前提。在后续章节中,我们将进一步探索深度学习中的优化技术、梯度下降算法及其变体,以及超参数调优等重要主题。

2. 神经网络优化技术

2.1 常见的优化算法

2.1.1 随机梯度下降算法

随机梯度下降(Stochastic Gradient Descent,SGD)算法是机器学习中广泛使用的一种优化算法。它在每次迭代中仅使用一个或一小批样本计算梯度,以更新模型参数。与传统的批量梯度下降相比,SGD能更快地收敛,并且能够处理大规模数据集。

# 示例代码:随机梯度下降的简单实现

# 假设我们有一个损失函数loss和参数theta
def gradient(theta):
    # 计算梯度
    return compute_gradient(theta)

def sgd(loss, theta, alpha, num_epochs):
    for epoch in range(num_epochs):
        for i in range(0, len(X), batch_size):
            xi = X[i:i+batch_size]
            yi = y[i:i+batch_size]
            grad_i = gradient(theta, xi, yi)
            theta = theta - alpha * grad_i
    return theta

# 参数说明
alpha = 0.01  # 学习率
num_epochs = 100  # 迭代次数
batch_size = 32  # 小批量大小
theta = initialize_parameters(...)  # 参数初始化

SGD的参数包括学习率α(alpha)和迭代次数。学习率决定了更新步长的大小,过大可能导致算法不收敛,过小则可能导致收敛速度过慢。迭代次数是算法运行的总轮数,每次迭代会通过整个数据集更新一次参数。

2.1.2 小批量梯度下降

小批量梯度下降(Mini-batch Gradient Descent)是随机梯度下降的一种扩展。它在每次迭代中使用一小部分训练样本(小批量)来近似梯度,既保持了SGD的快速收敛性,又能有效利用现代计算机硬件(如GPU)的矩阵运算能力。

# 示例代码:小批量梯度下降的实现

def mini_batch_gradient_descent(loss, theta, alpha, num_epochs, batch_size):
    for epoch in range(num_epochs):
        shuffled_indices = np.arange(len(X))
        np.random.shuffle(shuffled_indices)
        X_shuffled = X[shuffled_indices]
        y_shuffled = y[shuffled_indices]
        for i in range(0, len(X), batch_size):
            xi = X_shuffled[i:i+batch_size]
            yi = y_shuffled[i:i+batch_size]
            grad_i = gradient(theta, xi, yi)
            theta = theta - alpha * grad_i
    return theta

# 参数说明
# 参数与SGD类似,但是可能会涉及到小批量的额外参数,如:
batch_size = 128  # 一般设定为2的幂次,能够优化矩阵运算

在实际应用中,小批量梯度下降通常比SGD更受欢迎,因为它能提供更为稳定的梯度估计,同时还能受益于硬件加速。

2.2 优化算法的选择依据

2.2.1 理论基础

在选择优化算法时,理论基础是一个重要的考量因素。算法的收敛性、速度和稳定性是基本标准。例如,SGD具有良好的理论收敛保证,在某些条件下能够找到全局最优解。而小批量梯度下降则结合了速度和稳定性,适用于大多数深度学习任务。

2.2.2 实际应用比较

在实际应用中,需要考虑数据集的大小和质量,计算资源,以及特定任务的需求。小批量梯度下降在处理大型数据集时,由于其并行计算的优势,往往更加高效。此外,它还有助于模型的泛化,因为它在每次更新时使用了数据的多个样本。

| 优化算法 | 收敛速度 | 泛化能力 | 对计算资源的需求 | |----------|----------|----------|-------------------| | SGD | 较慢 | 强 | 较低 | | 小批量SGD | 中等 | 中等 | 中等 |

在选择优化算法时,通常需要在实验中进行多次尝试,并结合具体任务的需求来决定。不同的优化算法和超参数设置可能会导致模型训练效果有显著差异,因此实际操作中需要综合考量各因素。

3. 梯度下降及其变体

3.1 梯度下降算法原理

3.1.1 梯度下降的核心思想

梯度下降算法是机器学习和深度学习中应用最广泛的优化算法之一。其核心思想是迭代地将参数移动至函数值下降最快的方向,即梯度的方向。在数学上,梯度表示的是函数在该点处的方向导数沿着坐标轴最大增长的方向,因此在优化过程中,通过对损失函数关于参数求梯度,并沿着梯度的反方向进行更新,可以逐步减小损失函数的值。

3.1.2 梯度下降的数学解释

假设有一个损失函数 ( L(w) ),其形式依赖于模型参数 ( w ),梯度下降的目标是找到参数 ( w ) 的值,使得 ( L(w) ) 尽可能小。梯度下降算法的迭代公式可以表示为:

[ w \leftarrow w - \eta \nabla L(w) ]

其中,( \eta ) 是学习率,控制着每次迭代过程中参数更新的步长;( \nabla L(w) ) 表示损失函数 ( L(w) ) 关于参数 ( w ) 的梯度。通过选择合适的 ( \eta ) 值,参数 ( w ) 逐渐调整,最终找到损失函数的局部最小值。

3.2 梯度下降的变体技术

3.2.1 Mini-batch梯度下降

Mini-batch梯度下降是随机梯度下降(SGD)的一个扩展,它通过在每次迭代中使用一小批样本来计算梯度,而不是使用全部训练数据或单个样本。这样做的好处是可以平衡SGD的高方差和全批量梯度下降的高计算成本,同时还能利用现代硬件加速计算。

3.2.2 Stochastic梯度下降

Stochastic梯度下降(SGD)是最基本的梯度下降变体,它使用单个样本来计算梯度,每次迭代只进行一次参数更新。SGD的优点是快速和能够逃离鞍点,但其缺点是梯度估计的方差很大,这可能导致收敛速度慢或收敛至局部最小值。

接下来的两个小节将会深入介绍梯度下降的变体技术,展示它们如何在不同的应用场景中进行优化,以及如何根据具体问题选择合适的变体技术。

4. 动量法和Nesterov加速梯度

动量法(Momentum)和Nesterov加速梯度(NAG)是深度学习优化技术中用于加速梯度下降算法的两种重要技术。它们能够帮助模型更快地收敛,减少在学习过程中震荡,并且能够有效逃离局部最小值。

4.1 动量法优化技巧

4.1.1 动量法的工作原理

动量法通过积累过去梯度的动量来加速学习过程。这个思想来自于物理学中的动量概念,通过考虑前一步的梯度,来平滑梯度更新。具体来说,动量法不是仅仅根据当前梯度来更新参数,而是还会受到前一时刻参数更新方向的影响。

4.1.2 动量法的数学推导

动量法通过引入一个动量项(通常用变量v表示),来存储过去梯度的指数加权平均。该更新规则如下:

  1. 计算梯度: python g_t = ∇θ J(θ) 其中 J 是目标函数, θ 是参数向量, ∇θ 表示梯度。

  2. 更新动量项: python v_t = ρv_t-1 + ηg_t 这里 ρ 是动量项,通常接近于1(例如0.9), η 是学习率。

  3. 更新参数: python θ = θ - v_t 这样,在参数更新时就考虑了过去梯度的累积效应。

动量项v_t可以看作是之前梯度的移动平均值,它对梯度进行了平滑处理。如果梯度在几个连续的步骤中保持一致的方向,那么动量项v_t会加速参数的更新。如果梯度方向频繁改变,动量项会减缓更新。

4.2 Nesterov加速梯度优化

4.2.1 Nesterov加速梯度的原理

Nesterov加速梯度(Nesterov Accelerated Gradient, NAG)是动量法的一个变种,它提出了一种改进的方法来计算梯度。在传统的动量法中,参数的更新是根据当前参数位置计算梯度,但在NAG中,梯度计算是在动量更新之后的位置进行,这个位置是预期的位置,更加接近局部最小值。

4.2.2 实践中的应用效果

在实践应用中,NAG通常会比标准动量法收敛得更快。通过Nesterov动量的提前查看,模型可以更好地预测即将进行的参数更新,从而进行更合理的梯度计算。以下是Nesterov加速梯度的伪代码:

# 参数初始化
v = 0
# 设置超参数
ρ, η = ... # 动量系数和学习率

for t in range(迭代次数):
    # 在更新位置计算梯度
    v_prev = v
    v = ρ * v - η * ∇θ J(θ + ρ * v_prev)
    θ = θ + v

在代码中, θ 是参数, ∇θ 是梯度, η 是学习率, ρ 是动量系数,且通常取值接近1(例如0.9)。NAG与标准动量法的主要区别在于梯度计算的位置,Nesterov的梯度计算是在动量项影响之后的位置,而不是直接在当前位置。

实际使用NAG时,常常可以看到更快的收敛速度,尤其是在具有大量参数和复杂损失曲面的网络中。动量法和Nesterov加速梯度是优化深度学习模型时的重要工具,尤其是在大规模数据集和复杂模型中,它们能够有效地加速训练过程,减少震荡,从而提高模型的性能。

5. 自适应学习率算法

在深度学习的训练过程中,选择合适的学习率是优化模型性能的关键因素之一。固定的学习率可能无法适应训练过程中各个阶段的需求,而自适应学习率算法通过调整学习率,使得训练更加高效和稳定。本章将详细介绍Adagrad算法,并对RMSprop和Adam算法进行比较分析。

5.1 Adagrad算法详解

Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,它根据参数的过去梯度来调整每个参数的学习率,使得学习率能够根据参数的变化动态调整,非常适合处理稀疏数据。

5.1.1 Adagrad的工作机制

Adagrad的核心在于对每个参数进行单独的学习率调整。具体来说,Adagrad会累积过去所有梯度的平方和,然后使用这个累积值来调整后续的学习率。

假设有一个参数矩阵 ( \theta ) 和学习率 ( \eta ),在第 ( t ) 次迭代时,对于参数 ( \theta_i ) 的更新规则为:

[ \theta_{i}^{(t+1)} = \theta_{i}^{(t)} - \frac{\eta}{\sqrt{G_{ii}^{(t)} + \epsilon}} \cdot g_{i}^{(t)} ]

其中,( g_{i}^{(t)} ) 是参数 ( \theta_i ) 在第 ( t ) 次迭代时的梯度,( G_{ii}^{(t)} ) 是一个累积梯度的平方矩阵,( \epsilon ) 是一个很小的常数,用于避免除以零。

5.1.2 Adagrad的局限性

尽管Adagrad算法在处理稀疏数据时表现出色,但它有一个主要的缺点:随着时间推移,累积的平方梯度 ( G ) 会导致学习率单调递减,这可能会导致训练在早期停止,特别是在深度学习中。

为了解决这个问题,后续提出了一些改进的自适应学习率算法,比如RMSprop和Adam。

5.2 RMSprop和Adam算法对比

RMSprop和Adam算法都是为了克服Adagrad累积梯度导致学习率过早且持续减小的缺陷而设计的。它们对累积梯度的更新方式进行了改进,从而实现了更加稳定和有效的训练。

5.2.1 RMSprop的改进点

RMSprop(Root Mean Square Propagation)算法通过引入一个衰减因子来解决Adagrad累积梯度过快的问题。它使用以下公式来更新累积梯度:

[ E[g^2] t = \beta E[g^2] {t-1} + (1 - \beta)g_t^2 ]

其中,( \beta ) 是衰减因子,( g_t ) 是当前梯度,( E[g^2]_t ) 是在时间步 ( t ) 的累积梯度平方。

参数更新规则修改为:

[ \theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^2] t + \epsilon}} \cdot g {t} ]

5.2.2 Adam算法的优势分析

Adam(Adaptive Moment Estimation)算法结合了RMSprop的梯度平方的累积和Momentum的动量概念,从而在梯度的大小和方向上都进行了调整。

Adam的更新规则如下:

[ m_t = \beta_1 m_{t-1} + (1 - \beta_1)g_t ] [ v_t = \beta_2 v_{t-1} + (1 - \beta_2)g_t^2 ] [ \hat{m} t = \frac{m_t}{1 - \beta_1^t} ] [ \hat{v}_t = \frac{v_t}{1 - \beta_2^t} ] [ \theta {t+1} = \theta_{t} - \frac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \cdot \hat{m}_t ]

其中,( m_t ) 和 ( v_t ) 分别是对梯度一阶矩估计(即动量)和二阶矩估计(即未中心化的方差),( \hat{m}_t ) 和 ( \hat{v}_t ) 是偏差校正后的 ( m_t ) 和 ( v_t )。Adam通过这种一阶矩和二阶矩的估计,结合了Momentum和RMSprop的优势。

下面是一个简单的代码块来演示如何在Python中使用Adam优化算法:

# 定义一个简单的神经网络层
class SimpleNeuralNet:
    def __init__(self):
        self.parameters = ...  # 初始化参数
        self.velocity = ...    # 初始化速度(Adam中的第一矩估计)

    def compute梯度(self, ...):
        ...                     # 计算梯度

    def update参数(self, lr, velocity, grad):
        self.velocity = ...    # 更新速度(即梯度的第一矩估计)
        self.parameters -= lr * velocity / (np.sqrt(...))  # 使用Adam规则更新参数
        ...

# 实例化网络并开始训练循环
net = SimpleNeuralNet()
learning_rate = 0.001
for iteration in range(num_iterations):
    grad = ***pute_gradient(...)  # 计算梯度
    net.update_parameters(learning_rate, ..., grad)  # 使用Adam规则更新参数

上述代码展示了使用Adam优化器进行参数更新的基本思路。注意到在实际的深度学习框架中,Adam和其他优化算法都已高度优化和封装,可以直接使用,而不需要从头开始编写。

通过本章节的介绍,我们可以了解到自适应学习率算法相对于传统方法的优势,并且对Adagrad、RMSprop和Adam这些关键算法有了更加深入的认识。在实际应用中,选择合适的优化算法是提高模型训练效率和泛化能力的关键步骤。

6. 超参数调优方法

6.1 超参数调优的重要性

超参数是机器学习模型外部的参数,它们不能通过训练过程自动学习得到。这些参数通常需要在训练模型之前手工设定,并对模型的性能产生重大影响。理解超参数的种类及其调优的重要性是构建有效机器学习模型不可或缺的步骤。

6.1.1 超参数定义和种类

超参数可以理解为是为模型训练过程设置的“调优旋钮”,这些旋钮包括学习率、批次大小(batch size)、神经网络层数、每层神经元数量、激活函数种类等。这些超参数的值需要在训练之前进行设定,且它们的设定往往依赖于问题的性质、数据的特点以及经验规则。

6.1.2 调优的目标和意义

超参数调优的目标是找到最优的参数组合,以便使模型的性能达到最佳。这包括最小化验证集上的误差、提高模型的泛化能力、加快模型的训练速度等。进行有效的超参数调优不仅有助于提升模型性能,还可以帮助我们对模型的复杂度和拟合能力有更深入的理解。

6.2 超参数的搜索策略

在超参数调优中,搜索策略至关重要。有多种搜索策略可以帮助我们寻找最佳超参数组合,包括随机搜索、网格搜索以及基于模型的调优方法等。

6.2.1 随机搜索与网格搜索

随机搜索(Random Search)和网格搜索(Grid Search)是最常见的两种超参数搜索方法。随机搜索随机选取超参数组合进行模型训练,而网格搜索则在预设的超参数值的网格上进行系统性搜索。

随机搜索

随机搜索通过随机选择超参数组合来执行模型训练和验证。它的优势在于能够更快速地探索参数空间,尤其是当一些超参数对模型性能影响不大时,随机搜索可以更快地跳过这些区域。

import random
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 准备数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 设定随机搜索的参数范围
param_dist = {
    'n_estimators': [10, 50, 100, 200],
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth': [None, 10, 20, 30],
}

# 初始化随机森林分类器
rf = RandomForestClassifier()

# 使用随机搜索进行超参数调优
from sklearn.model_selection import RandomizedSearchCV
search = RandomizedSearchCV(rf, param_distributions=param_dist, n_iter=100, cv=5, verbose=2, random_state=42, n_jobs=-1)

# 执行搜索
search.fit(X_train, y_train)

# 输出最佳参数组合和对应模型性能
print("Best parameters: {}".format(search.best_params_))
print("Best cross-validation score: {:.2f}".format(search.best_score_))

该代码示例展示了如何使用随机搜索来优化随机森林分类器的超参数。 n_iter 参数决定了随机搜索中样本的数量,它可以帮助我们平衡搜索时间和超参数空间覆盖的广度。

网格搜索

网格搜索是一种更为彻底的搜索方法,它通过遍历超参数的预定义列表来进行系统搜索。网格搜索会尝试所有可能的参数组合,并找到最佳的超参数设置。

from sklearn.model_selection import GridSearchCV

# 初始化网格搜索的参数字典
param_grid = {
    'n_estimators': [100, 300],
    'max_features': ['auto', 'sqrt'],
    'max_depth': [None, 10],
}

# 使用网格搜索进行超参数调优
grid_search = GridSearchCV(rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)

# 执行搜索
grid_search.fit(X_train, y_train)

# 输出最佳参数组合和对应模型性能
print("Best parameters: {}".format(grid_search.best_params_))
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))

网格搜索的缺点在于随着参数数量的增加,搜索空间迅速增大,这会导致搜索过程变得非常耗时和计算密集。

6.2.2 基于模型的调优方法

近年来,基于模型的调优方法逐渐流行起来,这些方法通过建立一个元模型(meta-model)来预测给定参数下的模型性能,并以此来指导搜索。

贝叶斯优化

贝叶斯优化是一种非常有效的基于模型的调优方法。它通过构建一个概率模型来对目标函数进行建模,并利用这个模型来选择超参数的下一个评估点。它能够通过之前评估的信息来智能地探索那些更有希望的参数空间区域。

from sklearn.model_selection import BayesianOptimization

# 定义目标函数,这里是最大化分类准确率
def target_function(learning_rate, n_estimators):
    model = RandomForestClassifier(learning_rate=learning_rate, n_estimators=n_estimators)
    return -1 * cross_validation_score(model, X, y, cv=5).mean()

# 定义超参数搜索范围
pbounds = {'learning_rate': (1e-5, 1e-2), 'n_estimators': (100, 1000)}

# 实例化贝叶斯优化
optimizer = BayesianOptimization(f=target_function, pbounds=pbounds, random_state=1, verbose=2)

# 执行搜索
optimizer.maximize(n_iter=100)

# 输出最佳参数组合和对应模型性能
print("Best parameters: {}".format(optimizer.max['params']))
print("Best cross-validation score: {:.2f}".format(-optimizer.max['target']))

贝叶斯优化的一个主要优势是它在有限的资源下可以高效地找到近似最优解。贝叶斯优化适用于那些计算成本高昂的目标函数,因此在机器学习中非常有用。不过,需要注意的是,贝叶斯优化方法通常比随机搜索或网格搜索计算复杂度更高。

通过本章节的介绍,我们了解了超参数调优的重要性、种类以及搜索策略。这为后续章节中更深入地探讨超参数如何影响模型性能和训练过程打下了坚实的基础。

7. 正则化技术与批量归一化

7.1 正则化技术应用

正则化技术在深度学习模型训练中起着至关重要的作用,主要用于解决过拟合问题。过拟合是指模型在训练数据上表现得非常好,但在未见过的数据上表现不佳。正则化通过对模型复杂度的约束来减少这种现象。

7.1.1 L1和L2正则化原理

L1正则化和L2正则化是两种常见的正则化技术。

  • L1正则化 ,也称为Lasso正则化,它在损失函数中添加了权重的绝对值之和,即 λ * ||w||_1 。这种正则化倾向于产生稀疏权重矩阵,有助于特征选择,因为一部分权重可能被优化为零。

  • L2正则化 ,也称为Ridge正则化,它添加的是权重的平方和的λ倍,即 λ/2 * ||w||_2^2 。L2正则化倾向于使权重值较小且分散,它惩罚大的权重值,有助于防止过拟合。

正则化参数 λ 的选择对模型的性能有显著影响。如果 λ 太大,可能会导致模型欠拟合;如果 λ 太小,可能不足以防止过拟合。

7.1.2 正则化在防止过拟合中的作用

在实际应用中,正则化可以被看作是一种手段,它在损失函数中增加了一个额外的项,这个项对模型的权重施加约束。通过这种方式,正则化有助于降低模型的复杂度,让模型的预测更加泛化,而不是只在训练数据上表现良好。

使用正则化时,我们会调整损失函数,使其变为:

[ L(w) + \frac{\lambda}{2} ||w||_2^2 ]

对于L1正则化,损失函数变为:

[ L(w) + \lambda ||w||_1 ]

在模型训练过程中,正则化项会加入到梯度下降或优化算法的更新步骤中,其目的是在最小化经验风险的同时,保持模型简单。这样,即使面对含有噪声或不具代表性的训练数据,模型也能保持较好的泛化能力。

7.2 批量归一化技术

批量归一化(Batch Normalization)是另一种重要的优化技术,用于提高模型的训练速度和稳定性。

7.2.1 批量归一化的概念和原理

批量归一化的核心思想是减少内部协变量偏移(Internal Covariate Shift),即在同一层的输入中保持均值和方差的相对稳定。这有助于减少训练过程中的梯度消失或爆炸问题。

具体来说,批量归一化会将输入的每个小批量数据归一化为均值为0,方差为1的分布。接着,通过学习两个参数,即γ(尺度参数)和β(偏移参数),对这些归一化的值进行调整,以恢复网络表示能力:

[ y_i = \gamma \cdot \hat{x_i} + \beta ]

其中,(\hat{x_i})是归一化后的输入,(y_i)是最终输出。

7.2.2 批量归一化的实现与应用

批量归一化通常在卷积层或全连接层之后,激活函数之前进行。具体实现步骤如下:

  1. 计算均值和方差 :针对每个小批量数据,计算其均值和方差。
  2. 归一化 :用均值和方差对小批量数据进行归一化处理。
  3. 缩放和平移 :通过学习得到的γ和β对归一化后的数据进行缩放和平移。
  4. 反向传播 :反向传播算法通过批量归一化的层正常工作。

在实现批量归一化时,可以利用深度学习框架提供的内置函数。例如,在TensorFlow中,可以使用 tf.keras.layers.BatchNormalization() 来简单实现:

model.add(tf.keras.layers.BatchNormalization())

批量归一化的优势在于:

  • 加快训练速度 :通过减少内部协变量偏移,加快了模型的收敛速度。
  • 允许更高的学习率 :由于网络的稳定性增加,可以使用更高的学习率进行训练。
  • 减轻对初始化的依赖 :批量归一化减少了对权重初始值选择的敏感性。
  • 减少对Dropout的依赖 :由于正则化效应,网络对于Dropout的需求减少了。

批量归一化已经被广泛应用于各种深度学习模型中,并且通常会与其他正则化技术结合使用,以获得更优的模型性能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本课程深入剖析深度学习中的关键概念,包括优化算法、超参数调优、正则化方法和学习率调度策略。旨在帮助学员通过编程实践掌握神经网络的优化技术,理解梯度下降变体、超参数优化方法(如网格搜索、随机搜索、贝叶斯优化和K折交叉验证)、正则化技术(包括L1/L2正则化、Dropout、早停法和数据增强)以及批量归一化和学习率调度的应用。学员将通过实战项目加深对这些技术的理解,并提升深度学习模型性能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值