点击查看计算二重积分∫∫y^2dxdy,其中D是由圆周x^2+y^2=1所围成的闭区域具体信息
答:本题答案是:5π 。 1、本题的积分方法是: A、选用极坐标; B、去除绝对值符号,变成一部分在小圆内进行, 另一部分在圆环内进行,就能得到结果。 2、具体解答如下,如有疑问,欢迎追问,有问必答; 3、若点击放大,图片更加清晰。
答:本题答案是:5π 。 1、本题的积分方法是: A、选用极坐标; B、去除绝对值符号,变成一部分在小圆内进行, 另一部分在圆环内进行,就能得到结果。 2、具体解答如下,如有疑问,欢迎追问,有问必答; 3、若点击放大,图片更加清晰。
答:x² + y² = Rx ==> (x - R/2)² + y² = (R/2)² ==> r = Rcosθ 这是在y轴右边,与y轴相切的圆形 所以角度范围是有- π/2到π/2 又由于被积函数关于x轴对称 由对称性,所以∫∫D = 2∫∫D(上半部分),即角度范围由0到π/2 ∫∫ √(R&...
答:使用极坐标来解: 令x=r *cosa,y=r *sina D为x²+y²=2x与x轴围成 即r² < 2r *cosa,得到0
答:这个积分区域d是既可以用不等式y也可以用不等式x表示,所以既可以先对x积分,又可以先对y积分 接着算就可以。😊
答: 二重积分,先找出x和y的取值范围,然后先积y,再积x。
答: 如图
答:你好!答案是9/4,可以先画出积分区域如图,再化为二次积分计算。经济数学团队帮你解答,请及时采纳。谢谢!
答:结果为: 解题过程如下图: 扩展资料求函数积分的方法: 如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。 作...
答:在D上被积函数分块表示max{x2,y2}=x2,x≥y y2,x≤y (x,y)∈D, 于是要用分块积分法,用y=x将D分成两块:D=D1∪D2,D1=D∩{y≤x},D2=D∩{y≥x}. I=∫∫ D1 emaxx2,y2dxdy+∫∫ D2 emaxx2,y2dxdy =∫∫ D1 ex2dxdy+∫∫ D2 ey2dxdy=2∫∫ D1 ex2dxdy =2 ...
答:
答:1、如果被积函数的量纲是长度单位,则二重积分为体积; 2、如果被积函数的量纲是Pa,则二重积分的意义为计算总压力; 3、如果被积函数的量纲是kg/m²,则二重积分的意义就是算总质量; 4、如果被积函数的量纲是C/m² ,则二重积...
答:你这里的积分区域是什么? 没有积分的区域 即x和y的上下限 显然无法进行(x+y)²的积分 实际上选择好积分次序,分别对x和y积分,代入上下限即可
答:本题答案是:5π 。 1、本题的积分方法是: A、选用极坐标; B、去除绝对值符号,变成一部分在小圆内进行, 另一部分在圆环内进行,就能得到结果。 2、具体解答如下,如有疑问,欢迎追问,有问必答; 3、若点击放大,图片更加清晰。
解:∫∫xy²dxdy=∫dθ∫<0,2>(rcosθ)*(rsinθ)²*rdr (应用极坐标变换) =∫(cosθsin²θ...
∫∫e^(x^2+y^2)dxdy=∫[0->2π]∫[0->2]e^(r^2)rdrdθ =π∫[0->2]e^(r^2)d(r^2) =π[e^(r^2)] | [0->2] =π(e^4-1)
极坐标 ∫∫(D)ln(1+x²+y²)dxdy =∫∫(D)rln(1+r²)drdθ =∫[0→2π]dθ∫[0→1] rln(1+r²)dr =2π∫[0→1] rln(1+r²)dr =π∫[0→1] ln(1+r²)d(r&...
y=rsinθ 则∫∫√(R^2-X^2-Y^2)dxdy=∫∫ r *√(R^2-r^2) drdθ, 由积分区域D:X^2+Y^2=Rx可以知道, r^2<= R*rcosθ,即 r<=Rcosθ, 而画出D的图形可以知道θ的范围是[0,π...
) ∫∫_D xy² dxdy = ∫(-2-->2) dy ∫(0-->√(4 - y²)) xy² dx = ∫(-2-->2) x²y²/2 |(0-->√(4 - y²)) dy = 1/2 · ∫(-2-->2) (4 - y...
dxdy =∫[0,1]e^x^2*(x-x^3)dx =1/2e^x^2[0,1]-1/2∫[0,1]e^x^2*x^2dx^2 =1/2e^x^2[0,1]-1/2e^x^2*x^2[0,1]+∫[0,1]e^x^2dx^2 =1/2e^x^2[0,1]-1/2e^x^2*x^2[0,1]+e^x^2[0,1] =e/2=e/...
) ∫∫_D xy² dxdy = ∫(-2-->2) dy ∫(0-->√(4 - y²)) xy² dx =... y = x²,y = 2,交点(- √2,2),(√2,2) 面积A = 2∫(0-->2) √y dy = 2 · (2/3)y^(3/2...
∫(D)∫ln(1+x^2+y^2)dxdy D:x^2+y^2=1与 两坐标所围成的位于第一象限内的闭区 ρ=1,θ从0,到π/2 dS=ρdθdρ ∫(D)∫ln(1+x^2+y^2)dxdy =∫[0,1]∫[0,π/2]ln(1+ρ^2)...
利用极坐标计算二重积分,有公式 ∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的。 I=∫dx∫(x^2+y^2)^-1/2 dy x的积分上限是1,下限0 y的积分上限是x,下限...
以原点为圆心的圆上,对 z=x^2+y^2+xy 做二重积分: int ,函数功能强大,可以计算积分、定积分、广义积分以及一些特殊积分(如 sin(x)/x 的无穷积分、高斯积分、伽马积分等),对于...
计算二重积分时,应先计算其中一个自变量的取值范围,接着计算另一个自变量的取值范围,从而计算出二重积分。
0,0
求二重积分∫∫xydxdy,d由y=x²及x+2y-3=0与x轴围成 由2x²+x-3=(2x+3)(x-1)=0,得x₁=-3/2(舍去);x₂=1,y₂=1; 由x+2y-3=0,令y=0,得x=3; 积分域D...
:计算二重积分∫∫Dy2?xydxdy,其中D是由直线y=x,y=1,x=0所围成的平面区域.答:积分区域如下图.因为 y2-xy 是关于x的一次函数,从而,为计算简单起见,将积分转化为“先x后y”...
计算二重积分时,应先计算其中一个自变量的取值范围,接着计算另一个自变量的取值范围,从而计算出二重积分。
%假设x,y的积分限均为(-0.1,0.1)clcclears=linspace(0,sqrt(3));k=zeros(size(s));for i=1:length(s) rhom=2*pi/3/sqrt(3)/s(i);
计算二重积分的基本思想是计算曲顶柱体的体积,即把“曲顶柱体”切成极小的长方体,由底面积乘高算出每个小块,最后全“加”起来。如下图所示: 同时二重积分有着广泛的应...
更多精彩内容推荐: