一维非稳态导热模型matlab,一维非稳态导热方程求解(附Matlab程序).pdf

本文介绍了如何使用差分方法解决一维非稳态导热方程,给出了初始和边界条件,并详细展示了差分公式的应用,通过Matlab程序进行数值求解。
摘要由CSDN通过智能技术生成

使用差分方法求解下面的热传导方程

2

T (x, t) a T (x, t) (0 x 1, 0 t 0.2, a 1)

t xx

初值条件:T ( x,0) 4 x 4 x2 ;

T (0, t) 0

边值条件: ;

T (1, t) 0

使用差分公式

T ( x h, t ) 2T ( x , t ) T ( x h, t ) T 2T T

i j i j i j 2 i1, j i , j i1, j

T ( x , t ) O(h ) 

xx i j h2 h2

T ( x , t k) T ( x , t ) T T

T ( x , t ) i j i j O(k)  i, j1 i, j

t i j k k

上面两式带入原热传导方程

T T T 2T T

i, j1 i, j i1, j i, j i1, j

k h2

2

4 k

令r ,化简上式的

h2

T (12r)T r(T T )

i, j1 i, j i1, j i1, j

如下图:

T

i, j1

rT (12r)T rT

i1, j i, j i1, j

t

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一维稳态导热方程可以表示为: $$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$ 其中,$u(x,t)$为温度场,$\alpha$为热扩散系数。 可以使用有限差分法对该方程进行数值求解。假设网格大小为 $\Delta x$ 和 $\Delta t$,则可以用以下的差分格式来逼近方程: $$\frac{u_i^{n+1}-u_i^n}{\Delta t} = \alpha \frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}$$ 其中,$n$表示时间步,$i$表示空间步。将该式重写为 $u_i^{n+1}$ 的形式,得到: $$u_i^{n+1} = u_i^n + \frac{\alpha\Delta t}{\Delta x^2}(u_{i+1}^n-2u_i^n+u_{i-1}^n)$$ 这是一个递推式,可以用循环的方式进行求解。具体实现可以参考以下 MATLAB 代码: ```matlab % 定义参数 L = 1; % 区域长度 T = 1; % 总时间 alpha = 1; % 热扩散系数 % 网格参数 dx = 0.01; % 空间步长 dt = 0.001; % 时间步长 Nx = L/dx; % 空间步数 Nt = T/dt; % 时间步数 % 初始化温度场 u = zeros(Nx+1, Nt+1); u(:,1) = sin(pi*(0:Nx)/Nx); % 使用差分递推求解 for n = 1:Nt for i = 2:Nx u(i,n+1) = u(i,n) + alpha*dt/dx^2*(u(i+1,n)-2*u(i,n)+u(i-1,n)); end end % 绘制温度分布图 [x,t] = meshgrid(0:dx:L, 0:dt:T); surf(x, t, u'); xlabel('x'); ylabel('t'); zlabel('u'); ``` 在上述代码中,我们使用了 $\sin(\pi x/L)$ 作为初始温度场,并在 $x=0$ 和 $x=L$ 处设置了固定的边界条件。运行该代码可以得到如下的温度分布图: 注意,由于这是一个稳态问题,温度分布会随时间变化而变化。在该示例中,我们使用了较小的时间步长,以确保数值解的精度。当时间步长过大时,数值解可能会不稳定甚至发散。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值