自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(160)
  • 资源 (3)
  • 收藏
  • 关注

原创 用Python解矩阵方程——Numpy模块

用Python解矩阵方程,可以用两个模块——Numpy和Sympy矩阵方程:Ax=bA为系数矩阵,b为解集矩阵令B为A的增广矩阵1、Ax=b无解的充要条件:r(A)+1=r(B)2、Ax=b唯一解的充要条件:r(A)=r(B)=n3、Ax=b无穷多解的充要条件:r(A)=r(B)<n1、Numpy这里要用到numpy.linalg模块import numpy as np# numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等

2020-10-31 15:53:15 572

原创 python关于矩阵的基本程序知识——使用Numpy模块

python进行矩阵计算可以用两个模块:numpy和sympy1、Numpy创建矩阵:from numpy import *a1=array([1,2,3]) #数组a2=mat([1,2,3]) #矩阵a3=mat(a1)b=matrix([1,2,3]) #matrix是矩阵的意思print(a1)print(a2)print(a3)print(shape(a1),shape(a2),shape(a3))print(shape(b)) #shape——打印矩阵的行列数

2020-10-30 22:18:49 742

原创 Python——利用sympy模块进行数学计算

参考链接:SymPy简易教程SymPy库常用函数简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散 数学、几何学、概率与统计、物理学等方面的功能。(来自维基百科的描述)基本数值类型实数,有理数和整数SymPy有三个内建的数值类型:实数,有理数和整数。有理数类用两个整数来表示一个有理数。分子与分母,所

2020-10-20 20:31:09 840 4

转载 Python爬虫笔记——python3.7安装Scrapy

python3.7安装Scrapy----2019史上最牛逼的scrapy的安装教程

2020-08-18 11:48:45 35

原创 Python爬虫笔记——存储数据的基础知识(Csv、Excel)

存储成csv格式文件和存储成Excel文件,这两种不同的存储方式需要引用的模块也是不同的。操作csv文件我们需要借助csv模块;操作Excel文件则需要借助openpyxl模块。一、CSVimport csv#引用csv模块。csv_file = open('demo.csv','w',newline='',encoding='utf-8')#创建csv文件,我们要先调用open()函数,传入参数:文件名“demo.csv”、写入模式“w”、newline=''、encoding='utf-8'.

2020-06-28 11:37:24 212

原创 Python数据分析与挖掘——交叉验证法

交叉验证(Cross-validation)主要用于建模应用中,例如PCR (主成分回归)、PLS (偏最小二乘)回归建模中。在给定的建模样本中,拿出大部分样本进行建模型,留小部分样本用刚建立的模型进行预报,并求这小部分样本的预报误差,记录它们的平方加和。...

2021-02-28 17:33:31 9

原创 Python数据分析与挖掘——回归模型的假设检验

模型的显著性检验是指构成因变量的线性组合是否有效,即整个模型中是否至少存在一个自变量能够真正影响到因变量的波动。该检验是用来衡量模型的整体效应。回归系数的显著性检验是为了说明单个自变量在模型中是否有效,即自变量对因变量是否具有重要意义。这种检验则是出于对单个变量的肯定与否。模型的显著性检验和回归系数的显著性检验分别使用统计学中的F检验法和t检验法,接下来将介绍有关F检验和t检验的理论知识和实践操作。1. 模型的显著性检验——F检验在统计学中,有关假设检验的问题,都有一套成熟的步骤。首先来看一下如何应用

2021-02-28 12:37:42 8

原创 Python中机器学习神器——sklearn模块

参考文章Python机器学习笔记:sklearn库的学习ML神器:sklearn的快速使用机器学习与Sklearn的初识传统的机器学习任务从开始到建模的一般流程是:获取数据 → 数据预处理 → 训练建模 → 模型评估 → 预测,分类。Skikit-learn算法库由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。其中:常用的回归:线性、决策树、SVM、KNN ;常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;既可以回归也可以分类的算法:随机森林、Adaboost、Gr

2021-02-28 08:45:56 73

原创 Python数据分析与挖掘——线性回归预测模型

线性回归模型属于经典的统计学模型,该模型的应用场景是根据已 知的变量(自变量)来预测某个连续的数值变量(因变量)。例如,餐 厅根据每天的营业数据(包括菜谱价格、就餐人数、预定人数、特价菜 折扣等)预测就餐规模或营业额;网站根据访问的历史数据(包括新用 户的注册量、老用户的活跃度、网页内容的更新频率等)预测用户的支 付转化率;医院根据患者的病历数据(如体检指标、药物服用情况、平 时的饮食习惯等)预测某种疾病发生的概率。站在数据挖掘的角度看待线性回归模型,它属于一种有监督的学习 算法,即在建模过程中必须同时具

2021-02-27 11:20:46 58 1

原创 流体网络拓扑(4)——网络分流算法中的Barczyk法和Cross法的例题

例1代码:#Barczyk,有回路附加阻力from sympy import *q1,r1 = 3,2q2,r2 = 2,3q3,r3 = 5,1C_T = Matrix([[-1],[1]])i = 0while True: i += 1 print(f'第{i}次迭代:') f1 = round(r1 * q1 * abs(q1) - r2 * q2 * abs(q2), 4) f2 = round(r3 * q3 * abs(q3) + r2

2021-02-26 11:02:35 14

原创 ANSYS FLUENT软件基础介绍

计算流体力学或计算流体动力学(Computational Fluid Dynamics,CFD),是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。CFD是近代流体力学、数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘学科。CFD软件一般都能推出多种优化的物理模型,如定常和非定常流动、层流、紊流、不可压缩和可压缩流动、传热、化学反应等。对每一种物理问题的流动特点,都有适合它的数值解法,用户可选择显示或隐式差分格式,以期在计算速度、稳定性和精度等方面达到最佳。CFD软件

2021-02-25 10:43:08 47

原创 计算标准差、方差的Python程序

#计算拟合函数的标准差、方差from sympy import *X = [3.2,2.99,2.7,2.28,1.53]Y = [7.06,6.94,6.73,6.52,6.06]n = len(X)def f(x): y = 0.5955*x + 5.1486 return yY_v = []for i in range(n): Y_v.append(f(X[i]))S = 0for i in range(n): S += (Y[i] - Y_v[i]

2021-02-23 12:56:02 44

原创 流体网络拓扑(3)——网络分流

无回路附加阻力的Barczyk法迭代过程程序#Barczykfrom sympy import *q1,r1 = 20,0.375q2,r2 = 11.5,1.5q3,r3 = 8.5,2q4,r4 = 10.5,4.6875q5,r5 = 1,12.5q6,r6 = 9.5,1.7361q7,r7 = 20,0.5q8 = 20C_T = Matrix([[0,-1,-1,0,0],[0,0,-1,-1,0],[1,1,1,1,1]])i = 0while True:

2021-02-23 11:16:57 40

原创 流体网络拓扑(2)——流体网络图的矩阵表示

2 节点邻接矩阵2.1无向图2.2有向图有向图节点邻接矩阵A中元素的“负号”是指始节点vi到终节点vj的流向与图1-1中所约定的流向相反,因此以“负号”来表示。3关联矩阵与基本关联矩阵3.1关联矩阵3.1.1无向图3.1.2有向图3.2基本关联矩阵4回路矩阵与基本回路矩阵4.1回路矩阵回路是由支路所构成的一条闭合路径。回路矩阵是用回路与支路的关系描述有向图的拓扑性质。4.1.1无向图4.1.2有向图4.2基本回路矩阵将满秩的回路矩阵称为基本回路矩

2021-02-23 11:14:51 12 1

原创 流体网络拓扑(1)——流体网络拓扑的基本概念

1流体网络拓扑的基本概念图是数学中的一大研究领域,属于拓扑学中的一大分支。无论是通风系统,还是城市集中供热系统,以及城市煤气输送系统、自来水供应系统、集中空调系统等各种有流体流动的管路系统,它们都有一共同的特点,那就是它们都是由输送流体的管路、各种调节设施及动力设施构成,流体管路连接在一起形成流体网络。本章内容抛开流体网络的各种属性,只考虑流体网络的几何连接拓扑关系。为此,将管路称之为分支(边)或支路,3条以上分支的连接点称之为节点。1.1图、有向图、无向图、子图1.2路径、回路、连通图、非连通图

2021-02-23 11:13:59 8

原创 f-chart 太阳能热过程设计计算

基本概念

2021-01-19 08:46:42 50 2

原创 一天中蓄热水箱中水的温度的逐时变化的Python程序

基本概念

2021-01-18 08:51:27 40

原创 平板集热器的集热量和热效率计算的Python程序

基本概念集热器的示意图集热器有效利用能QuUL也成为热损失系数Tpm不易计算,Qu计算公式可转化为Tf,i是流体的进口温度#集热器有效利用能QuQ_u = A_c * F_R * (S-U_L*(T_i-T_a))集热效率η#集热效率ηEta = Q_u /(I_T*A_c)吸热面吸收的太阳辐射量S集热器性能的预测需要集热板吸收的太阳能信息。倾斜集热器上入射的太阳能可以用第二章的方法求出。这种入射辐射有三种不同的空间分布:直射辐射、散射辐射和地面反射辐射,每

2021-01-17 09:03:49 41

原创 计算某地的从日出到日落各时刻的水平面直射和散射辐射,倾斜面总辐射的Python程序

基本概念

2021-01-16 08:41:51 56

原创 太阳时角、太阳高度角、天顶角、太阳方位角和剖面角计算的Python程序

基本概念经度,LongitudeL,经度(longitude)是地球上一个地点离一根被称为本初子午线的南北方向走线以东或以西的度数。本初子午线的经度是0°,地球上其它地点的经度是向东到180°或向西到180°。在本初子午线以东的经度叫东经,在本初子午线以西的叫西经。东经用"E"表示,西经用"W"表示。维度,Latitudeφ(phi),维度 , 赤道以北或以南的角位置,北正;−90°≤φ≤90°。赤纬角,Declinationδ,赤纬,太阳正午(即,当太阳位于本初子午线时)太阳相对于赤道平面

2021-01-15 15:00:18 63

原创 求两个相交的线性函数的交点的Python程序

分别已知两个函数上的两个不同的点,求两个线性函数的交点from sympy import *x = symbols('x')#求两个函数的交点x1 = 1x2 = -2#第一个函数过的两点的纵坐标值y1 = 6.55y2 = 7.72k1 = (y2-y1)/(x2-x1)b1 = y1 - k1*x1#第二个函数过的两点的纵坐标值z1 = 7.98z2 = 7.47k2 = (z2-z1)/(x2-x1)b2 = z1 - k2*x1X = solve((k1*x + b

2021-01-09 09:21:37 69

原创 经典龙格-库塔法(四阶龙格-库塔法)求解求一阶常微分方程相应的特解的Python程序

基本原理例题代码#四阶龙格-库塔法#求一阶常微分方程,相应的特解#x变量的区间a = 0b = 1#已知条件X = [0]Y = [1]h = 0.2 #设置步长n = (b-a)/h #步数def f(x,y): df = y-2*x/y return df#程序运行for i in range(int(n)): x1 = X[i]+h X.append(x1) #x1=x0+h k1 = f(X[i], Y[

2021-01-04 18:23:51 123

原创 太阳时的计算的Python程序

基本概念太阳时(Solar Time)基于太阳在太阳正午时穿过天空的视角运动的时间太阳穿过观察者的子午线的时间。太阳时是用于所有太阳角度关系的时间;它与本地时间不一致。有必要通过两次修正将标准时间(本地时间)转换为太阳时。首先,对观察者的子午线(经度)和当地标准时间所依据的子午线之间的经度差进行不断的修正。太阳横穿经度1°需要4分钟。第二个修正来自时间方程,它考虑了地球自转率的扰动,这些扰动影响了太阳穿过观察者子午线的时间。太阳时间和标准时间的分钟差是太阳时 - 标准时 = 4(Lst - Llo

2021-01-03 10:36:28 60

原创 计算某月某日某时是一年里(设计典型年)的第几个小时的Python程序

上图的第三列是指从一年的1月1日零时开始计数(几小时数),某月某日某时在这一年里是第几时。另外,上图的一年是按设计中的典型年来计算,所以2月份是按28天计算,不用分是否是闰年。代码#需要输入的值month = 12 #1≤month≤12day = 1 #1≤day≤31hour = 0 #24小时制(0~23)#程序运行并输出结果sum = 0if month >= 1 and month <= 12: if day >= 1 and day.

2021-01-02 15:53:48 27

原创 求具有隔热材料的外围护结构墙体的温度分布得Python程序

【Python实现雅可比&高斯-赛德尔&超松弛迭代法】高斯–塞德尔迭代法求方程组的解(Python实现)二维非稳态导热研究生数值分析课后题(上机编程)-1

2021-01-01 18:37:20 32

原创 高斯-勒让德求积分的Python程序

理论知识:勒让德多项式及性质代码:#高斯-勒让德求积公式from sympy import *from scipy.special import perm,comb #排列,组合n = 2 #n次多项式正交,n越大精度越高(n=0,1,2,...)x = symbols("x")#勒让德多项式def L(n): df = diff((x ** 2 - 1) ** (n + 1), x, n + 1) # Python内置阶乘函数factorial # L =

2020-12-31 09:09:07 84

原创 二维非稳态对流扩散无源项——隐式格式+QUICK格式,四周边界定壁温的Python程序

5.3 多维非稳态对流扩散方程#二维非稳态对流扩散问题#无源项,,隐式,QUICK格式from numpy import *from numpy.linalg import *import pandas as pdX = 2.8 #物体x方向总长度Y = 3.4 #物体y方向总长度u = 0.28 #x方向速度v = 0.26 #y方向速度n = 10 #x方向划分网格数m = 10 #y方向划分网格数I = 0.1 #扩散系数p = 1 #密度dt = 0.1

2020-12-22 09:57:48 96

原创 二维稳态对流扩散问题,无源项,QUICK格式,四周边界定壁温的Python程序

#二维稳态对流扩散问题#无源项,QUICK格式from numpy import *from numpy.linalg import *import pandas as pdX = 2.8 #物体x方向总长度Y = 3.4 #物体y方向总长度u = 0.28 #x方向速度v = 0.26 #y方向速度n = 10 #x方向划分网格数m = 10 #y方向划分网格数I = 0.1 #扩散系数p = 1 #密度#边界条件tA = 60 #左边界A点,定壁温tB

2020-12-22 09:50:17 78 1

原创 线性插值法(一次插值多项式)的Python程序

线性插值例子求t=16时,速度v的值#线性插值法(一次线性插值)x = 16#16在15与20之间,所以,只需要两组数据x0 = 15y0 = 362.78x1 = 20y1 = 517.35P = y0 + (y1-y0)/(x1-x0)*(x-x0)print(P)结果:393.69399999999996...

2020-12-21 21:45:11 78

原创 多项式插值法的Python程序

#多项式插值from numpy import *from numpy.linalg import *x = [0, 10, 15, 20, 22.5, 30]y = [0, 227.04, 362.78, 517.35, 602.97, 901.67]n = len(x)A = zeros((n, n))for i in range(n): for j in range(n): A[i][j] = x[i]**(n-1-j)B = zeros((n,1))for

2020-12-21 21:36:14 54

原创 高斯型数值积分公式的Python程序

变步长梯形公式from sympy import *def f(t): f = 2000*log(140000/(140000-2100*t))-9.8*t return fx = symbols('x')truth = integrate(f(x),(x,8,30)).evalf()print(truth) #真值def tra_n(n,a,b): h = (b-a)/n tra_result = 0 for i in range(n):

2020-12-21 21:10:12 71

原创 龙贝格算法求数值积分的Python程序

Ronberg Integration分成n等份时辛普森公式的值from sympy import *def f(t): f = 2000*log(140000/(140000-2100*t))-9.8*t return fx = symbols('x')truth = integrate(f(x),(x,8,30)).evalf()print(truth) #真值def T(n,a,b): h = (b-a)/n tra_result = 0

2020-12-21 21:02:51 42

原创 变步长梯形公式数值积分的Python程序

基本代码:from sympy import *def f(t): f = 2000*log(140000/(140000-2100*t))-9.8*t return fx = symbols('x')truth = integrate(f(x),(x,8,30)).evalf()print(truth) #真值def T(n,a,b): h = (b-a)/n tra_result = 0 for i in range(n): ..

2020-12-21 19:50:52 79

原创 抛物线公式即辛卜生(Simpson)公式的数值积分的Python程序

from sympy import *def f(t): f = 2000*log(140000/(140000-2100*t))-9.8*t return fx = symbols('x')truth = integrate(f(x),(x,8,30)).evalf()print(truth)n = 10 #步长,就是将(a,b)区间分为多少个块a = 8b = 30h = (b-a)/npar_result = 0for i in range(n): ..

2020-12-16 21:49:24 95

原创 梯形公式的数值积分的Python程序

from sympy import *def f(t): f = 2000*log(140000/(140000-2100*t))-9.8*t return fx = symbols('x')truth = integrate(f(x),(x,8,30)).evalf()print(truth)n = 10 #步长,就是将(a,b)区间分为多少个块a = 8b = 30h = (b-a)/ntra_result = 0for i in range(n): ..

2020-12-16 21:27:58 117

原创 多项式最小二乘法曲线拟合Python程序

#多项式最小二乘法曲线拟合from numpy import *from numpy.linalg import *X = [80, 40, -40, -120, -200, -280, -340]Y = [6.47*10**-6, 6.24*10**-6, 5.72*10**-6, 5.09*10**-6, 4.30*10**-6, 3.33*10**-6, 2.45*10**-6]# X = [1, 3, 4, 5, 6, 7, 8, 9, 10]# Y = [2, 7, 8, 10, 11

2020-12-07 17:19:09 157 1

原创 线性最小二乘法的Python程序

最小二乘法系数与常数的求解公式例子#最小二乘法X = [0.698132, 0.959931, 1.134464, 1.570796, 1.919862]Y = [0.188224, 0.209138, 0.230052, 0.250965, 0.313707]n = len(X)xy, x, y, x2, = 0, 0, 0, 0for i in range(n): xy += X[i]*Y[i] #xy的和 x += X[i] #x的和 y += Y[

2020-11-30 14:48:47 39

原创 第二届全国大学生算法设计与编程挑战赛(赛题,共10个)

n = 10 #跑道长度role_style = ['>.wwws..s.','.>.wwws.s.','>>>>>s.m.m','>w.wss..s.']for role in role_style: v = 1 T = 0 t = 0 tc = 0 r_list = list(role) for item in r_list: if item == '.': #平地

2020-11-23 19:44:35 1798

原创 python中chr()函数和ord()函数的用法

Python内置函数一,chr()函数格式:Chr(<数值表达式>)说明:函数返回值类型为String,其数值表达式值取值范围为0~255。以下是 chr() 方法的语法:chr(i)i – 可以是10进制也可以是16进制的形式的数字。返回值是当前整数对应的 ASCII 字符。让我们来看看有些什么:for i in range(256): print(chr(i),end='')结果:   !"#$%&amp

2020-11-22 12:02:45 313

原创 整数进制转换——输入十进制整数和欲转换的进制数r,将十进制数转换为r进制数的Python程序

我之前写过十进制与二进制之间的转换:十进制浮点数转化为二进制的Python代码十进制整数转化为r进制数程序功能为:输入十进制整数和欲转换的进制数r,将十进制转换为r进制。编程思想为:调用函数DToR,逐位求模。若该位为大于9的数,则以字母代表(提示:大写字母’A’的ASCII码值等于65);若该位为9以下的数,则转换为字符格式。从低位至高位连接字符串并返回结果。如下图所示:代码:def DToR(m,r): t='' while m!=0 and r!=0:

2020-11-22 10:45:28 284

2020年E题.zip

第十七届研究生数学建模竞赛赛题(E题):机场能见度估计和预测 第十七届研究生数学建模竞赛赛题(E题):机场能见度估计和预测 第十七届研究生数学建模竞赛赛题(E题):机场能见度估计和预测 第十七届研究生数学建模竞赛赛题(E题):机场能见度估计和预测 第十七届研究生数学建模竞赛赛题(E题):机场能见度估计和预测

2020-09-21

2020年ABCDF题.zip

第十七届研究生数学建模竞赛赛题(2020年)A、B、C、D、F题 题目A:芯片相噪算法 题目B:汽油辛烷值建模 题目C:面向康复工程的脑信号分析和判别建模 题目D:无人机集群协同对抗 题目F:飞行器质心平衡供油策略优化

2020-09-21

数据挖掘与数据分析——Python数据可视化的例子的数据集

本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集

2020-09-09

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除