引言谐振子体系是最简单也是最基本的物理系统之一,在自然界中基本上无处不在.体系在平衡位置的小振动往往都可以用谐振子模型描述,许多复杂体系的运动单元甚至结构单元都可以等效地看成谐振子,其等间距的能谱结构更是使其在场量子化问题中独具优势.通过祸合的谐振子可以实现能量的输运,因此祸合谐振子体系可以描述很多复杂的体系.从日常生活中简单的拍手、散步到复杂的固体系统、介观祸合电路体系、量子光学体系[l,2]和量子信息科学领域,再到心脏起搏细胞、大脑和脊髓的神经网络等生命科学领域的运动,最后到自然界中的蟋蟀群、季风中的青蛙种群以及成群的萤火虫等自然现象的描述,祸合谐振子体系己成为大家普遍采用的模型之一,因此解决祸合谐振子问题仍是现在的研究热点问题之一!3一”}.祸合谐振子体系虽然复杂,但一般情况下总可以找到一个新的表象.在新的表象构架内,祸合谐振子体系退祸合为一组没有祸合的重新标度的谐振子.在自身表象中,力学量是对角化的,且对角矩阵元就是力学量的本征值,因此求解藕合谐振子能量本征值的关键便是实现该体系哈密顿量的对角化.常用的对角化方法有坐标一动量积分型投影算符法、线性量子变换法、坐标一动量变换法等.当祸合谐振子体系的空间维度较小时,体系的哈密顿量易于进行对角化处理.针对二维或三维祸合谐振子体系的坐标祸合、坐标祸合和动量藕合、坐标-动量祸合情况,相关文献己做了大量探讨[‘o一‘g],其结果在压缩数态、两个非全同量子谐振子体系动力学问题、参量转换与拉曼转换过程中均有应用.但考虑坐标一坐标、动量一动量、坐标一动量同时藕合的谐振子体系,文献仅限于二维[l。一‘2}.而多模压缩态同、耗散系统!7一9}、简并参量放大系统!21]等体系的研究则需要采用n维藕合谐振子模型.体系维度的增加意味着自由度的变大,当体系的维度达到n维时,研究工作较少,且藕合范围也仅是部分地祸合!3一6].基于此,本文提出了一个广义n维各向异性坐标一坐标、动量一动量、坐标一动量同时祸合谐振子体系模型,并且利用二次型理论实现了该模型哈密顿量的退祸合,给出了体系能量本征值的精确值和本征函数.2哈密顿量的对角化考虑一个广义n维藕合谐振子体系,其哈密顿物理学报AetaPhys.Sin.VOI.61,No.14(2012)140301几一l一9曰入一量的二次量子化形式可写为/一客附才傲粉a7+对2{二1。子2入122八122二2、若2几+艺阵、a,+Zfi*a知丈了)z=l+ZoZa才a;+2。犷aZa丈),(l)其中a才,a:分别是产生和湮灭算符,定义为a才一(二:、、二、一i,、)/训丽石瓜,(2)a,=(m*山,x,+iP,)/斌Zh二;、、,它们满足基本对易关系式【a、,a六=百、,,,【a,,a,,1=[a才,a或]=O,(乞万‘=l,2,…,n).将(l)式中的d;,。坛,九,g,写为下面的表达式ha、d乞=簇止,e乞=一ih飞、,2入i。2几一1儿2守1二2入。一l:‘2二二、灵2兀(6)守。一l二2守二一1几2守。。2九=29、=h【入、,一二、二了、,竹。:,一i飞,(二乞。*+。JoJ)2了m:7’n了‘、公,h【入,,+二、m7、、吟叭;+i守、,(二、、,一二,吟)}2丫饥,饥,国,口:(3)因乃为实对称矩阵,则必存在n阶实正交矩阵Ql=(叭;).通过正交变换21二diag(QIQl)使其对角化.可设乃的本征值为rl,几,二,几‘.同时,Tl,乃分别变换为Q不TIQI,Q丁乃Ql.可知Q了TIQI,Q了双Ql是实对称矩阵.哈密顿量(4)式可化为则哈密顿量(l)式可化为坐标一坐标、动量一动
matlab模拟n维谐振子,广义n维耦合谐振子体系的代数解法
最新推荐文章于 2022-01-22 20:46:56 发布