java孙膑与庞涓_这个题那是-数学题孙膑,庞涓都是鬼谷子的徒弟,一天鬼出了这道题目:他从2到9 爱问知识人...

在其它地方看到答案,比较费解,贴出来让大家共同学习

1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。

因为如果和54<S<54+99,那么S可以写为S=53+a,a<=99。如果鬼谷子选

的两个数字恰好是53和a,那么孙知道的积M就是M=53× a,于是孙知道,这原

来两个数中至少有一个含有53这个因子,因为53是个素数。

可是小于100,又有

53这个因子的,只能是 53本身,所以孙就可以只凭这个积53×a推断出这两个

数术53和a。所以如果庞知道的 S大于54的话,他就不敢排除两个数是53和a这

种可能,也就不敢贸然说“但是我肯定你也不知道这两个数是什么”这种话。

如果53+99<S<=97+99,那么S可以写为S=97+a,同以上推理,也不可能。

如果S=98+99,那么庞可以立刻判断出,这两个数只能是98和99,而且M只

能是98×99,

孙也可以知道这两个术,所以显然不可能。

2)按照庞的第一句话的后半部分,我们还可以肯定庞知道的和S不可以表示

为两个素数的和。

否则的话,如果鬼谷子选的两个数字恰好就是这两个素数,那么孙知道积M

后,就可以得到唯一的素因子分解,判断出结果。于是庞 还是不敢说“但是我

肯定你也不知道这两个数是什么”这种话。

根据哥德巴赫猜想,任何大于4的偶数都可以表示为两个素数之和,对54以

下的偶数,猜想肯定被验证过,所以S一定不能是偶数。

另外型为S=2+p的奇数,其中p是奇素数的那些S也同样要排除掉。

还有S=51也要排除掉,因为51=17+2×17。

如果鬼谷子选的是(17,2×17),

那么孙知道的将是M=2×17×17,他对鬼谷子原来的两数的猜想只能是(17,2×

17)。(为什么51要单独拿出来,要看下面的推理)

3)于是我们得到S必须在以下数中:

11 17 23 27 29 35 37 41 47 53

另外一方面,只要庞的S在上面这些数中,他就可以说“但是我肯定你也不

知道这两个数是什么”,因为这些数无论怎么拆成两数和,都至少有一个数是

合数(必是一偶一奇,如果偶的那个大于2,它就是合数,如果偶的那个等于2

,我们上面的步骤已经保证奇的那个是合数),也就是S只能拆成a) S=2+a×b

或 b) S=a+2^n×b这两个样子,其中a和b都是奇数,n>=1。

那么(下面我说

的“至少两组数”中的两组数都不相同,而且的确存在(也就是那些数都小于

100)的理由我就不写了,根据条件很显然)

a)或者孙的M=2×a×b,孙就会在(2×a,b)和(2,a×b)至少两组数里拿不定

主意(a和b都是奇数,所以这两组数一定不同);

b)或者M=2^n×a×b,

如果n>1,那么孙就会在(2^(n-1)×a,2×b)和(2^n×a,b)至少两组数里拿

不定主意;

如果n=1,而且a不等于b,那么孙就会在(2×a,b)和(2b,a)至少两组数里拿

不定主  意;

如果n=1,而且a等于b,这意味着S=a+2×a=3a,所以S一定是3的倍数,我

们只要

讨论S=27就可以了。

27如果被拆成了S=9+18,那么孙拿到的M=9×18,他就

会在

(9,18)和(27,6)至少两组数里拿不定主意。

(上面对51的讨论就是从这最后一种情况的讨论发现的,我不知道上面的

论证是否

过分烦琐了,但是看看51这个“特例”,我怀疑严格的论证可能就得这么

烦) 现在我们知道,当且仅当庞得到的和数S在 C={11, 17, 23, 27, 29, 35,

37, 41, 47, 53} 中,他才会说出“我虽然不能确定这两个数是什么,但是我

肯定你也不知道这两个数是什么”这句话  孙膑可以和我们得到同样的结论

,他还比我们多知道那个M。

4)孙的话“我现在能够确定这两个数字了”表明,他把M分解成素因子后,

然后组合成关于鬼谷子的那两个数的若干个猜想中,有且 仅有一个猜想的和在

C中。否则的话,他还是会在多个猜想之间拿不定主意。

庞涓听了孙的话也可以得到和我们一样的结论,他还比我们多知道那个S。

5)庞的话“我现在也知道这两个数字是什么了”表明,他把S拆成两数和后

,也得到了关于鬼谷子的那两个数的若干个猜想,但是在 所有这些拆法中,只

有一种满足4)里的条件,否则他不会知道究竟是哪种情况,使得孙膑推断出那

两个数来。

于是我们可以排除掉C中那些可以用两种方法表示为S=2^n+p的S,其中n>1

,p为素数。

因为如果S=2^n1+p1=2^n2+p2,无论是 (2^n1,p1)还是(2^n2,p2)这

两种情况,孙膑都可以由M=2^n1×p1或M=2^n2×p2来断定出正确的结果,因为

由M得到的各种两数组合,只有 (2^n,p)这样的组合,两数和才是奇数,从而在

C中,于是孙膑就可以宣布自己知道了是怎么回事,可庞涓却还得为(2^n1,p1)

还是(2^n2, p2)这 两种情况犯愁。

因为11=4+7=8+3,23=4+19=16+7,27=4+23=16+11,35=4+31=16+19,

37=8+29=32+5,47=4+43=16+31。于是S的可能值只能在17 29 41 53中。让我们

继续缩小这个表。

29不可能,因为29=2+27=4+25。无论是(2,27)和(4,25),孙膑都可以正确

判断出来:

a)如果是(2,27),M=2×27=2×3×3×3,那么孙可以猜的组合是(2,27)

(3,18)(6,9),

后面两种对应的S为21和15,都不在C中,故不可能,于是只能是(2,27)。

b)如果是(4,25),M=4×25=2×2×5×5,那么孙可以猜的组合是(2,50)

(4,25)(5,20)   (10,10)。只有(4,25)的S才在C中。

可是庞涓却要为孙膑的M到底是2×27还是4×25苦恼。

41不可能,因为41=4+37=10+31。

后面推理略。

53不可能,因为53=6+47=16+37。后面推理略。

研究一下17。这下我们得考虑所有17的两数和拆法:

(2,15):那么M=2×15=2×3×5=6×5,而6+5=11也在C中,所以一定不是这

个M,否则4)的条件不能满足,孙“我现在能够确定这两 个数字了”的话说不

出来。

(3,14):那么M=3×14=2×3×7=2×21,而2+21=23也在C中。后面推理略。

(4,13):那么M=4×13=2×2×13。那么孙可以猜的组合是(2,26)(4,13),

只有(4,13)的和在C中,所以这种情况孙膑可以说4)中的话。

(5,12):那么M=5×12=2×2×3×5=3×20,而3+20=23也在C中。后面推理

略。

(6,11):那么M=6×11=2×3×11=2×33,而2+33=35也在C中。后面推理略

(7,10):那么M=7×10=2×5×7=2×35,而2+35=37也在C中。

后面推理略。

(8,9):那么M=8×9=2×2×2×3×3=3×24,而3+24=27也在C中。后面推理

略。

于是在S=17时,只有(4,13)这种情况,孙膑才可以猜出那两数是什么,既

然如此,庞涓就知道这两个数是什么,说出“我现 在也知道这两个数字是什么

了”。

听了庞涓的话,于是我们也知道,这两数该是(4,13)。

全部

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

Jason Hsiao

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值