已知原函数和导函数的关系_导数小题中的函数构造

本文探讨了高中数学中利用函数与方程思想、转化与化归思想解决导数问题,特别是如何构造函数。通过实例解析,阐述了在已知原函数和导函数关系时,如何构造抽象函数并利用函数的性质解决问题。文章还提到,对于不同类型的函数构造,需要深入理解函数结构,以便找到合适的构造方法。
摘要由CSDN通过智能技术生成

e511253e6c75a445547b66a0461b4cc9.gif

 函数与方程思想、转化与化归一思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中。函数构造的题型一般比较灵活,一般主要涉及构造为f(x).g(x)与 7b5bdbdb8341bbd0862719c12e3bfebc.png两种类型较为常见。下面我就导数小题中构造函数的技巧与大家进行分享。

01

利用f(x)进行抽象函数的构造

3b19f4481bd4d41a470a0612243bc95e.png

【例1】

e3f328021ad2075323f15c863c9ace7d.png

解析】本题出现“+”的形式,则优先构造F(x)=xf(x),然后利用函数的单调性、奇偶性和数形结合求解即可.因此构造函数F(x)=xf(x),求导的F′(x)=xf′(x)+f(x),当x<0时,xf′(x)+f(x)<0,由此可以推出F′(x)<0,F(x)在(-∞,0)上单调递减.∵f(x)为偶函数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值