函数与方程思想、转化与化归一思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中。函数构造的题型一般比较灵活,一般主要涉及构造为f(x).g(x)与 两种类型较为常见。下面我就导数小题中构造函数的技巧与大家进行分享。
01
利用f(x)进行抽象函数的构造
【例1】
【解析】本题出现“+”的形式,则优先构造F(x)=xf(x),然后利用函数的单调性、奇偶性和数形结合求解即可.因此构造函数F(x)=xf(x),求导的F′(x)=xf′(x)+f(x),当x<0时,xf′(x)+f(x)<0,由此可以推出F′(x)<0,F(x)在(-∞,0)上单调递减.∵f(x)为偶函数,