什么叫圆的周长定义_2020初三数学复习:圆心角、圆周角、弧与弦心距的关系会怎样考...

#我要上头条# #数学# #头条教育#

685054d6bda25af27b2182c89ae12a92.png

01单元要点

圆是最美的图形,其中有一个非常重要的特性,就是在旋转的过程中,圆的所有性质都不变。

圆既是轴对称图形,又是中心对称图形,且其绕对称中心旋转任意角度,图形都不会发生变化。

在本单元新课学习阶段,我们已经通过实验、观察等方式,发现了圆心角、弧、弦、弦心距之间关系,明确了生活中的许多事物之间是相互联系、相互转化的。

本节内容的核心知识点是:在同圆或等圆中,圆心角相等、圆周角相等、弧相等、弦心距相等,已知其中任意一组量相等,就可以知道其他各组量也相等。

在本单元的中考考查中,围绕相关定理进行综合命题,也是考试中常见的一种方式。比如第12题,以圆周角定理为核心,融合考查了“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半”,推论:“半圆(或直径)所对的圆周角是直角”,“90°的圆周角所对的弦是直径”等,还考查了垂径定理和平行四边形的性质。

此题的解答过程,也充分利用了圆周角定理,得到∠ACD=90°,再根据平行四边形的性质得到CD∥OB,CD=OB,则可求出∠A=30°,在Rt△AOP中利用含30度的直角三角形三边的关系可对A选项进行判断;利用OP∥CD,CD⊥AC可对C选项进行判断;利用垂径可判断OP为△ACD的中位线,则CD=2OP,原式可对B选项进行判断;同时得到OB=2OP,则可对D选项进行判断。

在中考中,任何一个考题,考查的都是我们的综合运用能力和逻辑分析能力,需要我们在学习中不断地提升这种能力,以求得数学知识的最优化。

现在,请大家走进圆的世界吧!

675cc4d84be699e81ae85f79e9f673ed.png

02阅读说明

因网页不支持数学公式,所有试题请以图片为准。

本人是一名数学教师,也是一名公益志愿者。

如果我的付出,对你或你的亲友有所帮助,期待你

(1)关注我!@同心圆数学世界

(2)在评论区留言支持!

(3)把这份资料转发给需要它的同学!

(4)你自己(亲友)能收藏用上这份资料!

(5)在本文之前和之后,已发布大量的相关复习资料,欢迎查阅使用。

ed697ca9c0ba138b0e0f5770d54ce4cf.png

03中考真题精选

dffadb145bf34619f299c6599ace8ce8.png
f5f2c0cee0b4b4070edceae06644d8eb.png
39d09554d234520abca3511410cf3d77.png
53b284a3e3bd3f44c8166e4333bdd224.png
5c8ad0e152ade55d81f56ca55c89a80d.png
e4d42e686bc006611f85172494b59441.png
1dea3dc510cf738bb06954c5f14b9c1a.png
8f120e1ac8e315c059eebcc350e505ee.png
1645a17b02d09294b51677c7e506fbbd.png
31fb85e43b76780d7d5e3e6c84e045b2.png
9d9745cd618170ac7b8c030153cdc6bd.png
67c6460992e95adf8afe9637e4c3d1a1.png

04参考答案

0b57297474d96837cff538307e7a3b4e.png
5b6048b01461a0328032b006ed71d689.png
20dbe19095d0f07578d20f74bac6a1be.png
fcd96f7ea3f85f4eede8a26795b13361.png
02c482da3e5409c2c155b73aa8a6e309.png
e83c0df2c700ca345ce5b3a88871bb3e.png
070fa0fb14f7dd8de874f6d7cdac9798.png
76233b8806c041bd1fccc7170b2703de.png
3265bdb0ae76d3a4923ffab4e4904877.png
af060c30b4b255c73415cfedf93a0ebe.png
908d8ad98804e35a78504916d465850c.png
d088f94839921fa4c19eb454b761ad37.png
f1405c49dd76cb2668e203bb1a80c321.png
688d9f187530313fe79a988f27954f5c.png
08b67031659fc63a33c27a5c1da9d65c.png
96c1e5659ae8a6bff43688e4a78dc982.png
aeb0cc9a743bcefabf76aa4468fe9b0b.png
9a5f474942908df4418d696eed1c3e8d.png
e70cfeb482595d7ca6deaaaea8bee252.png
1c9888a00b6325aaaef73033a8d1049e.png
1ecb942932553a3e95fbb3b95feea71e.png
b6516b32da0e8ba7ca81194bb1205070.png
c7c48f068ce4742192115d1923bc0418.png
267c263611f9f33910a579a474aca41d.png
4b75b5a0715dfc8ae9e55601d42aaf19.png

05经典题目解析

一、选择题

1. 考点圆心角、弧、弦的关系;翻折变换(折叠问题).

分析直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.

2. 考点M5:圆周角定理;M4:圆心角、弧、弦的关系.

分析根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.

3. 考点MN:弧长的计算;M5:圆周角定理.

分析连接OB、OC,利用圆周角定理求得∠BOC=60°,属于利用弧长公式l= 来计算劣弧 的长.

4. 考点M5:圆周角定理.

分析连接BD,根据直径所对的圆周角是直角,得∠ADB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.

5. 分析连接OD,由垂径定理得出AB⊥CD,由三角函数求出BH=3,由勾股定理得出DH= =4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.

6. 分析先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.

7. 分析根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.

8. 分析根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.

9. 分析由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.

10. 分析根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.

11. 分析连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.

点评本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.

12. 分析利用圆周角定理得到∠ACD=90°,再根据平行四边形的性质得到CD∥OB,CD=OB,则可求出∠A=30°,在Rt△AOP中利用含30度的直角三角形三边的关系可对A选项进行判断;利用OP∥CD,CD⊥AC可对C选项进行判断;利用垂径可判断OP为△ACD的中位线,则CD=2OP,原式可对B选项进行判断;同时得到OB=2OP,则可对D选项进行判断.

点评此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和平行四边形的性质.

13. 分析根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.

点评本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.

14. 分析连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.

点评本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

15. 答案B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.

此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.

二、填空题

16. 分析:连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB= ,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.

点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.

17. 考点圆周角定理;等腰三角形的性质.

分析连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.

18. 答案32。试题分析:由∠ABC=∠ADC=90°,E为对角线AC的中点,可知A,B,C,D四点共圆,圆心是E,直径AC然后根据圆周角定理由∠BAD=58°,得到∠BED=116°,然后根据等腰三角形的性质可求得∠EBD=32°.

考点:1、圆周角性质定理,2、等腰三角形性质

19. 分析利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.

20. 分析连接 并延长交 于 ,连接 ,于是得到 , ,解直角三角形即可得到结论.

点评本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.

21. 分析先利用邻补角计算出∠BOC,然后根据圆周角定理得到∠CDB的度数.

点评本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

22. 分析连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.

点评:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键。

23. 分析过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.

点评本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.

三、解答题

24. 分析(1)根据角平分线的定义和圆周角定理即可得到结论;

(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.

点评本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.

25. 分析连接AC,由圆心角、弧、弦的关系得出 = ,进而得出 = ,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.

点评本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.

26. 分析(1)由AB=CD知 = ,即 + = + ,据此可得答案;

(2)由 = 知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.

点评本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.

27. 分析(1)根据角平分线的定义和圆周角定理即可得到结论;

(2)连接 ,根据平角定义得到 ,根据圆周角定理得到 ,求得 ,得到 ,根据弧长公式即可得到结论.

点评本题考查了圆周角定理,三角形的外接圆与外心,弧长的计算,正确的识别图形是解题的关键.

29. 分析(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;

(2)设AB与CE交于点M.根据角平分线的性质得出 = .易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE= BE,作AF⊥CE于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例,进而求出 .

点评本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义,通过作辅助线是解题的关键.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值