关于git push命令中的matching和simple

最近使用git时,发现执行push命令时,出现了下面的提示:

warning: push.default is unset; its implicit value has changed in
Git 2.0 from 'matching' to 'simple'. To squelch this message
and maintain the traditional behavior, use:

  git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

  git config --global push.default simple

When push.default is set to 'matching', git will push local branches
to the remote branches that already exist with the same name.

Since Git 2.0, Git defaults to the more conservative 'simple'
behavior, which only pushes the current branch to the corresponding
remote branch that 'git pull' uses to update the current branch.

See 'git help config' and search for 'push.default' for further information.
(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
'current' instead of 'simple' if you sometimes use older versions of Git)

好像是push命令有两种方式,让我选择其中一种,上网查了一下,发现果然是这样的

matching(匹配所有分支)

matching 参数是 Git 1.x 的默认参数,也就是老的执行方式。其意是如果你执行 git push 但没有指定分支,它将 push 所有你本地的分支到远程仓库中对应匹配的分支。

simple(匹配单个分支)

simple参数是 Git 2.x 默认参数,意思是执行 git push 没有指定分支时,只有当前分支会被 push 到远程仓库。

所以

如果我们想使用matching方式,可以在命令行输入:

git config --global push.default matching

如果我们想使用simple方式,可以在命令行输入:

git config --global push.default simple
引言 非线性函数极值寻优是工程优化和科学计算中的核心问题,传统方法在处理高维、多峰或不可导函数时往往效果不佳。神经网络遗传算法的结合为解决这类复杂优化问题提供了新思路。本文将从计算机专业角度,详细分析神经网络遗传算法在非线性函数极值寻优中的原理、实现方法及优化策略。 混合算法原理架构 遗传算法(GA)神经网络(NN)的混合架构充分发挥了两者的优势:神经网络提供强大的非线性拟合能力,遗传算法则提供全局搜索能力。该混合系统的工作流程可分为三个关键阶段: 神经网络建模阶段:构建BP神经网络结构(如2-5-1),通过训练数据学习目标函数的输入输出关系。激活函数通常选择Sigmoid或ReLU,损失函数采用均方误差(MSE)。 遗传算法优化阶段:将神经网络参数编码为染色体(实数编码),以网络预测精度作为适应度函数fitness = 1/(1+MSE)。通过选择、交叉(概率0.4-0.9)和变异(概率0.01-0.2)操作进化种群。 协同优化阶段:遗传算法优化后的参数初始化神经网络,再进行BP微调,形成"全局搜索+局部优化"的双重机制。 关键技术实现 神经网络建模 采用MATLAB的Neural Network Toolbox实现,关键步骤包括: net = feedforwardnet([5]); % 单隐藏层5神经元 net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法 net = train(net, input, target); % 网络训练 遗传算法优化 适应度函数设计参数编码是核心: function fitness = ga_fitness(x) = sim(net, x'); % 神经网络预测 fitness = 1/(1+mse(y-target)); end 种群规模建议50-
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值