在了解了不同类型的变量之后,我们现在该用这些变量做点什么了。
今天,我们将了解如何在变量上执行计算。你最终将会掌握如何使用变量和操作符来创建复杂的表达式。
Python 中,运算符(operators)是一些特殊的符号,用来指明可以执行某种计算。
那些被运算符操作的值叫做操作数(operands)。
>>> a = 10>>> b = 20>>> a + b30
这个简单的例子中,运算符 + 将 a 和 b 两个操作数相加。
操作数既可以是字面常量,也可以是指向对象的变量。
>>> a + b -525
像 a + b - 5 这样由运算符和操作数组成的序列称为表达式。
Python 提供了众多的运算符来将各种对象组成表达式。
我们按照运算类型分别介绍一下这些运算符。
【算术运算符】
顾名思义,算术运算符是用来做算术运算的。
下表列举了 Python 支持的算术运算符。
运算符例子用途运算结果
+(一元)
+a
对操作数取正
a,无实际意义
+(二元)
a + b
操作数相加
a 和 b 之和
-(一元)
-a
对操作数取负
a的负数
-(二元)
a - b
操作数相减
a 和 b 之差
*
a * b
操作数相乘
a 和 b 之积
/
a / b
操作数相除
a 除以 b 的商,结果为 float 类型
%
a % b
求模
a 除以 b 的余数
//
a // b
地板除(floor division):
两数相除,结果向下取整
a 除以 b 的商,并取小于等于且最接近此商值的整数
**
a ** b
幂运算
a 的 b 次幂
看一些例子:
>>> a = 4>>> b = 3>>> +a4>>> -b-3>>> a+b7>>> a-b1>>> a*b12>>> a/b1.3333333333333333>>> a%b1>>> a ** b64>>> a // b1
除法(/)运算的结果始终为 float 类型,即使可以整除。
>>> 10 /52.0>>> type(10 / 5)
对于地板除(floor division),若结果为正,小数部分被舍弃;若结果为负,结果被约等为和其值最接近的不大于该值的整数。你可以这样统一理解,地板除的结果就是取数轴上结果点左侧最靠近它的那个整数。
>>> 10 / 42.5>>> 10 // 42>>>>>> 10 / -4-2.5>>> 10 // -4-3>>>>>> -10 / -42.5>>> -10 // -42
【比较运算符】
比较运算符用于比较两个对象的“大小”。不同对象有其自定义的“大小”语义。
下表列举了 Python 支持的比较运算符。
运算符例子用途运算结果
==
a == b
比较操作数是否相等
True,若 a 等于 b;False,若不相等。
!=
a != b
比较操作数是否不等
True,若 a 不等于 b;False,若相等
<
a < b
小于比较
True,若 a 小于 b;False,若不小于
<=
a <= b
小于或等于比较
True,若 a 小于或等于 b;False,若大于
>
a > b
大于比较
True,若 a 大于 b;False,若不大于
>=
a >= b
大于或等于比较
True,若 a 大于或等于 b;False,若小于
看一些例子:
>>> a = 10>>> b = 20>>> a == bFalse>>> a != bTrue>>> a <= bTrue>>> a >= bFalse>>>>>> b = 20>>> a == bFalse
比较运算符通常用于 Boolean 上下文中,比如条件和循环语句,以改变程序的控制流程。
这里需要注意一下浮点数的等值比较。
我们在 Python 变量中介绍过,存储在 float 对象中的数值可能并非你所想的那么精确。因此,直接比较两个浮点数是否相等,通常是不可取的操作。
>>> x = 1.1 + 2.2>>> x == 3.3False>>> x3.3000000000000003
正确的做法是:比较两个浮点数是否足够接近彼此,它们的“距离”在可接受的误差范围内即认为两者相等。
>>> distance = 0.00001>>> x = 1.1 + 2.2>>> abs(x - 3.3) < distanceTrue
【逻辑运算符】
逻辑运算符包括:not、or 和 and。这三者可连接和修改 Boolean 上下文中的表达式,从而表达更复杂的条件语义。
1,包含 Boolean 类型操作数的逻辑表达式
我们知道,Python 中有些对象和表达式的值可以是 True 或 False,这时候,这些对象和表达式实际上就是 Boolean 类型。
>>> x = 5>>> x < 10True>>> type(x < 10)>>>>>> t = x > 10>>> tFalse>>> type(t)>>>>>> callable(x)False>>> type(callable(x))>>>>>> t = callable(len)>>> tTrue>>> type(t)
在上边这些例子中,x<10、callable(x)、t 都是 Boolean 类型的对象或表达式。
当表达式中含有这些 Boolean 类型的操作数时,计算表达式的值很简单。
可根据下表来计算:
运算符例子含义
not
not x
True,若 x 是False;False,若 x 是 True
or
x or y
True,若 x 或 y 是 True;否则,False
and
x and y
True,若 x 和 y 均为 True;否则,False
看一些例子:
>>> x = 5>>> x < 10True>>> not x < 10False>>> callable(x)False>>> not callable(x)True>>>>>> x < 10 or callable(x)True>>> x < 0 or callable(x)False>>>>>> x < 10 and callable(x)False>>> x < 10 and callable(len)True
2,非 Boolean 类型的值在 Boolean 上下文中的求值
Python 中还有很多对象和表达式的值并不等于 True 或 False,即它们非 Boolean 类型。
尽管如此,在需要进行 Boolean 计算的环境中,这些对象或表达式也可以被适当处理,从而被视为“真值(truthy)”或“假值(falsy)”。
那么,到底何为真?何为假?嗯,这可以上升为一个较难回答的哲学问题。
但在 Python 中,真与假却是良好定义的。
在 Boolean 上下文中,以下这些情况均视作假:
Boolean 类型值:False
任何在数字上等于0的值:0、0.0、0.0+0.0j
空字符串:''
任何空的内置组合数据类型
关键字 None 表示的值
其他 Python 内置的对象可判为真。
我们可以使用 bool() 函数来判断一个对象或表达式是否为真。若参数为真值,bool() 返回 True,否则返回 False。
数字数值的 Boolean 判定方法:
值为 0 的数字为 False,非 0 值为 True。
>>> print(bool(0), bool(0.0), bool(0.0+0.0j))False False False>>> print(bool(-3), bool(3.14159), bool(1.0+1j))True True True
字符串的 Boolean 判定方法:
空字符串为 False,非空字符串为 True。
>>> print(bool(''), bool(""), bool(""""""))False False False>>> print(bool('foo'), bool(" "), bool(''' '''))True True True
内置组合类型对象的 Boolean 判定方法:
Python 内置的组合数据类型包括:list、tuple、dict 和 set。它们是可以包含其他对象的“容器”。
当这些容器不含任何其他对象时,这些容器就是空的。若容器为空,容器对象就视作假;容器非空,容器对象就视作真。
>>> type([])>>> bool([])False>>> type([1, 2, 3])>>> bool([1, 2, 3])True
关键字 None 永远为假。
>>> bool(None)False
3,包含非 Boolean 类型操作数的逻辑表达式
非 Boolean 类型的值也可用在逻辑表达式中,通过 not、or 和 and 来修改或组合。表达式的计算结果依赖于这些非 Boolean 操作数的真假。
注意:这里,表达式的结果不一定是 Boolean 值!
not 作用于非 Boolean 操作数:
当 x 为:
not x 为:
真值
False
假值
True
例如:
>>> x = 3>>> bool(x)True>>> not xFalse>>>>>> x = 0.0>>> bool(x)False>>> not xTrue
or 作用于非 Boolean 操作数:
当 x 为:
x or y 为:
真值
x
假值
y
例如:
>>> x = 3>>> y = 4>>> x or y3>>> x = 0.0>>> y = 4.4>>> x or y4.4
and 作用于非 Boolean操作数:
当 x 为:
x and y 为:
真值
y
假值
x
例如:
>>> x = 3>>> y = 4>>> x and y4>>> x = 0.0>>> y = 4.4>>> x and y0.0
4,复合表达式与短路求值
我们在上文列举的例子都是使用了一个运算符和至多两个操作数:
x or yx and y
实际上,多个运算符和操作数也可以连在一起使用,形成复合逻辑表达式。
复合 or 表达式形式如下:
x1 or x2 or x3 or ... xn
当 xi 中任一操作数为True 时,表达式为 True。
在处理这类包含多个逻辑运算符的表达式时,Python 采用“短路求值”法来计算表达式的值。解释器会从左向右逐一计算每个操作数 xi 的值。一旦遇到一个 xi 的值为 True,整个表达式就被认为是 True,此时,解释器不再继续向右计算,表达式的值就是最后那个已计算的 xi 操作数的值。
请注意体会“表达式的真假值”和“表达式的值”的区别,我们有时候会混用这两个概念。
为便于理解“短路求值”,我们可以设计一个简单的函数 f(),该函数的功能为:
f() 接受一个单一的值作为参数
f() 将参数输出到控制台
f() 将参数作为返回值返回
这是几个调用 f() 的例子:
>>> f(0)-> f(0) = 00>>>>>> f(False)-> f(False) = FalseFalse>>>>>> f(1.5)-> f(1.5) = 1.51.5
我们可以向 f() 传递具有真值或假值的参数,以使得 f(arg) 的值也为真或假。并且,通过控制台的输出,我们能看到复合逻辑表达式中某一部分是否被调用了。
来看下边这个复合逻辑表达式:
>>> f(0) or f(False) or f(1) or f(2) or f(3)-> f(0) = 0-> f(False) = False-> f(1) = 11
按照上边的介绍,f(0)、f(False) 依次被调用,直到 f(1) 为 True 时,表达式已能被判定为 True,计算到此结束,表达式的值就是 f(1) 的值。f(2) 和 f(3) 不会被执行到。
复合 and 表达式形式如下:
x1 and x2 and x3 and ... xn
所有 xi 均为 True,表达式才为 True。
短路求值对复合 and 表达式的处理逻辑为:从左到右依次计算每个操作数的真假值,一旦遇到一个 xi 的值为 False,整个表达式就被判定为 False,计算结束,表达式的值就是最后那个已计算的 xi 操作数的值。
仍使用 f() 函数来看两个例子:
>>> f(1) and f(False) and f(2) and f(3)-> f(1) = 1-> f(False) = FalseFalse>>>>>> f(1) and f(0.0) and f(2) and f(3)-> f(1) = 1-> f(0.0) = 0.00.0
这两个表达式的计算过程都停止在第一个为假值的操作数上:f(False)、f(0.0),表达式的值分别为 False 和 0.0。后边的 f(2) 和 f(3) 没有被调用。
如果所有的操作数都是真值,那么它们都会被计算,最后一个操作数的值就是表达式的值。
>>> f(1) and f(2.2) and f('bar')-> f(1) = 1-> f(2.2) = 2.2-> f(bar) = bar'bar'
短路求值在实际应用中有一些惯用场景:
a, 避免出现异常
假设有两个变量:a 和 b。我们想要判断 (b / a) 是否大于 0.
>>> a = 3>>> b = 1>>> (b / a) > 0True
这里,需要注意 a 的值不能为 0,否则会导致异常:
>>> a = 0>>> b = 1>>> (b / a) > 0Traceback (most recent call last):File "", line 1,
in ZeroDivisionError: division by zero
我们可借助短路求值避免这种异常:
>>> a = 0>>> b = 1>>> a != 0 and (b / a) > 0False
a 为 0 时,a != 0 为假值,and 表达式求值结束,右边的除法运算不会执行到。
对于这个问题,我们还可以写出更简单的表达式:
>>> a = 0>>> b = 1>>> a and (b / a) > 00
作为数字,a 为 0 时,其就是一个假值,and 表达式也会结束求值过程。
b, 选择默认值
为变量赋值时,若遇到 0 或 空值,可借助短路求值为变量赋一个默认值。
比如,我们想使用字符串 s2 为字符串 s1 赋值,如果 s2 为空字符串,我们可以为 s1 指定一个默认值。
>>> s2 = "World">>> s1 = s2 or 'Hello'>>> s1'World'>>>>>> s2 = ''>>> s1 = s2 or 'Hello'>>> s1'Hello'
5,链式比较
在 Python 中,多个比较运算符可以串联起来使用。
比如,下边这两个表达式基本相同:
>>> x >> x
它们有一点区别:y 的计算次数不同。x < y <= z 中,y 只计算一次;x < y and y <= z 中,y 会被计算两次。
如果 y 只是一个静态值,比如 1,这种差别微乎其微。但假如 y 是一个复杂的表达式,少一次计算可能会带来可观的效率上的提升。例如:
x < f() <= zx < f() and f() <= z
更一般的情况,如果 op1、op2、op...、opn 是比较运算符,那么下边的表达式具有相同的 Boolean 值:
x1 op1 x2 op2 x3 ... opn xnx1 op1 x2 and x2 op2 x3 and x3 ... opn xn
同样,前者中的 xi 只计算一次,而后者中的非首尾的 xi 会计算两次,除非计算提前结束。
【位操作运算符】
位操作运算符将操作数视为二进制序列,对操作数进行逐位运算。
下表列举了 Python 支持的位操作运算符。
运算符例子含义结果
&
a & b
按位与
两个操作数对应位相与(全1则1,否则为0)
|
a | b
按位或
两个操作数对应位相或(有1则1,全0为0)
~
~a
取反
对操作数的每一位取反(0则1,1则0)
^
a ^ b
异或
两个操作数对应位异或(异则1,同则0)
>>
a >> n
右移
将操作数右移n位
<<
a << n
左移
将操作数左移n位
看一些例子:
>>> '0b{:04b}'.format(0b1100 & 0b1010)'0b1000'>>> '0b{:04b}'.format(0b1100 | 0b1010)'0b1110'>>> '0b{:04b}'.format(0b1100 ^ 0b1010)'0b0110'>>> '0b{:04b}'.format(0b1100 >> 2)'0b0011'>>> '0b{:04b}'.format(0b0011 << 2)'0b1100'
这里,以二进制的形式来表示操作数和运算结果,可以清晰地看出位运算的执行逻辑。
【ID 运算符】
id 运算符用于判断两个操作数是否拥有相同 id,也即是否指向同一对象。
这和“相等”不是同一个概念,相等表示两个操作数的值相等,而它们不一定指向同一个对象。
Python 提供 is 和 is not 两个 id 运算符。
看一些例子:
>>> a = 798>>> b = 798>>> a == b #相等True>>> a is b #id 不同False>>>>>> a = 798>>> b = a>>> a is b #a、b 指向同一对象,id 相同True
【运算符的优先级】
我们都知道算术中的混合运算可以包含多种运算符,这些运算符可改变运算顺序。
>>> 20 + 4 * 1060
在这个例子中,同时存在 + 和 * 两种运算符,按照算术规则,先算乘法后算加法,乘法优先级高于加法。
Python 中的每个运算符也都有一定的优先级。优先级高的运算符先被执行,优先级相同的运算符按照从左向右的顺序执行。
我们目前已使用了多种运算符,按优先级从低到高列表如下:
运算符描述
最低优先级
or
Boolean 或
and
Boolean 且
not
Boolean 非
==、!=、、>=、is、is not
比较运算、id运算
|
按位或
^
异或
&
按位与
<>
移位操作
+、-
加减
*、/、//、%
乘除、地板除、取模
+x、-x、~x
一元正负、按位取反
最高优先级
**
幂运算
看一些例子:
>>> 2 * 3 ** 4 * 5810
括号可以改变运算符的优先级,并且有助于理解运算的先后顺序。
>>> 20 + 4 * 1060>>> (20 + 4) * 10240>>> 2 * 3 ** 4 * 5810>>> 2 * 3 ** (4 * 5)6973568802
【扩展的赋值运算符】
赋值(=)运算符用于为变量赋值。既可以为变量赋静态值,也可以为其赋予一个包含其他变量的表达式,并且表达式中还可以包含变量自身。
>>> a = 10>>> b = 20>>> c = a * 5 + b>>> c70>>> a = a + 5>>> a15>>> b = b * 3>>> b60
对于 a=a+5、b=b*3 这种赋值形式,其含义是在变量自身基础上再进行赋值操作。其前提是,变量必须已经被赋予了初值,否则导致错误。
>>> i = i / 12Traceback (most recent call last):File "", line 1,
in NameError: name 'i' is not defined
Python 为上边这种赋值方式提供了一个简写形式:
x = y
这种简写等同于:
x = x y
支持这种扩展赋值方式的运算符包括:
+、=、*、/、%、//、**、&、|、^、>>、<<
看一些例子:
>>> a = 5>>> a += 2>>> a7>>> b = 16>>> b /= 4>>> b4.0
【结语】
本文详细介绍了 Python 提供的各种运算符,以及如何这些运算符来生成表达式。
特别指出了浮点比较运算、短路求值等细节性问题,相信会对你理解和使用运算符和表达式提供帮助。
我们接下来会学一个非常重要的数据类型:字符串。