python表达式的正确表达_RealPython 基础教程:Python 运算符和表达式

在了解了不同类型的变量之后,我们现在该用这些变量做点什么了。

今天,我们将了解如何在变量上执行计算。你最终将会掌握如何使用变量和操作符来创建复杂的表达式。

Python 中,运算符(operators)是一些特殊的符号,用来指明可以执行某种计算。

那些被运算符操作的值叫做操作数(operands)。

>>> a = 10>>> b = 20>>> a + b30

这个简单的例子中,运算符 + 将 a 和 b 两个操作数相加。

操作数既可以是字面常量,也可以是指向对象的变量。

>>> a + b -525

像 a + b - 5 这样由运算符和操作数组成的序列称为表达式。

Python 提供了众多的运算符来将各种对象组成表达式。

我们按照运算类型分别介绍一下这些运算符。

【算术运算符】

顾名思义,算术运算符是用来做算术运算的。

下表列举了 Python 支持的算术运算符。

运算符例子用途运算结果

+(一元)

+a

对操作数取正

a,无实际意义

+(二元)

a + b

操作数相加

a 和 b 之和

-(一元)

-a

对操作数取负

a的负数

-(二元)

a - b

操作数相减

a 和 b 之差

*

a * b

操作数相乘

a 和 b 之积

/

a / b

操作数相除

a 除以 b 的商,结果为 float 类型

%

a % b

求模

a 除以 b 的余数

//

a // b

地板除(floor division):

两数相除,结果向下取整

a 除以 b 的商,并取小于等于且最接近此商值的整数

**

a ** b

幂运算

a 的 b 次幂

看一些例子:

>>> a = 4>>> b = 3>>> +a4>>> -b-3>>> a+b7>>> a-b1>>> a*b12>>> a/b1.3333333333333333>>> a%b1>>> a ** b64>>> a // b1

除法(/)运算的结果始终为 float 类型,即使可以整除。

>>> 10 /52.0>>> type(10 / 5)

对于地板除(floor division),若结果为正,小数部分被舍弃;若结果为负,结果被约等为和其值最接近的不大于该值的整数。你可以这样统一理解,地板除的结果就是取数轴上结果点左侧最靠近它的那个整数。

>>> 10 / 42.5>>> 10 // 42>>>>>> 10 / -4-2.5>>> 10 // -4-3>>>>>> -10 / -42.5>>> -10 // -42

【比较运算符】

比较运算符用于比较两个对象的“大小”。不同对象有其自定义的“大小”语义。

下表列举了 Python 支持的比较运算符。

运算符例子用途运算结果

==

a == b

比较操作数是否相等

True,若 a 等于 b;False,若不相等。

!=

a != b

比较操作数是否不等

True,若 a 不等于 b;False,若相等

<

a < b

小于比较

True,若 a 小于 b;False,若不小于

<=

a <= b

小于或等于比较

True,若 a 小于或等于 b;False,若大于

>

a > b

大于比较

True,若 a 大于 b;False,若不大于

>=

a >= b

大于或等于比较

True,若 a 大于或等于 b;False,若小于

看一些例子:

>>> a = 10>>> b = 20>>> a == bFalse>>> a != bTrue>>> a <= bTrue>>> a >= bFalse>>>>>> b = 20>>> a == bFalse

比较运算符通常用于 Boolean 上下文中,比如条件和循环语句,以改变程序的控制流程。

这里需要注意一下浮点数的等值比较。

我们在 Python 变量中介绍过,存储在 float 对象中的数值可能并非你所想的那么精确。因此,直接比较两个浮点数是否相等,通常是不可取的操作。

>>> x = 1.1 + 2.2>>> x == 3.3False>>> x3.3000000000000003

正确的做法是:比较两个浮点数是否足够接近彼此,它们的“距离”在可接受的误差范围内即认为两者相等。

>>> distance = 0.00001>>> x = 1.1 + 2.2>>> abs(x - 3.3) < distanceTrue

【逻辑运算符】

逻辑运算符包括:not、or 和 and。这三者可连接和修改 Boolean 上下文中的表达式,从而表达更复杂的条件语义。

1,包含 Boolean 类型操作数的逻辑表达式

我们知道,Python 中有些对象和表达式的值可以是 True 或 False,这时候,这些对象和表达式实际上就是 Boolean 类型。

>>> x = 5>>> x < 10True>>> type(x < 10)>>>>>> t = x > 10>>> tFalse>>> type(t)>>>>>> callable(x)False>>> type(callable(x))>>>>>> t = callable(len)>>> tTrue>>> type(t)

在上边这些例子中,x<10、callable(x)、t 都是 Boolean 类型的对象或表达式。

当表达式中含有这些 Boolean 类型的操作数时,计算表达式的值很简单。

可根据下表来计算:

运算符例子含义

not

not x

True,若 x 是False;False,若 x 是 True

or

x or y

True,若 x 或 y 是 True;否则,False

and

x and y

True,若 x 和 y 均为 True;否则,False

看一些例子:

>>> x = 5>>> x < 10True>>> not x < 10False>>> callable(x)False>>> not callable(x)True>>>>>> x < 10 or callable(x)True>>> x < 0 or callable(x)False>>>>>> x < 10 and callable(x)False>>> x < 10 and callable(len)True

2,非 Boolean 类型的值在 Boolean 上下文中的求值

Python 中还有很多对象和表达式的值并不等于 True 或 False,即它们非 Boolean 类型。

尽管如此,在需要进行 Boolean 计算的环境中,这些对象或表达式也可以被适当处理,从而被视为“真值(truthy)”或“假值(falsy)”。

那么,到底何为真?何为假?嗯,这可以上升为一个较难回答的哲学问题。

但在 Python 中,真与假却是良好定义的。

在 Boolean 上下文中,以下这些情况均视作假:

Boolean 类型值:False

任何在数字上等于0的值:0、0.0、0.0+0.0j

空字符串:''

任何空的内置组合数据类型

关键字 None 表示的值

其他 Python 内置的对象可判为真。

我们可以使用 bool() 函数来判断一个对象或表达式是否为真。若参数为真值,bool() 返回 True,否则返回 False。

数字数值的 Boolean 判定方法:

值为 0 的数字为 False,非 0 值为 True。

>>> print(bool(0), bool(0.0), bool(0.0+0.0j))False False False>>> print(bool(-3), bool(3.14159), bool(1.0+1j))True True True

字符串的 Boolean 判定方法:

空字符串为 False,非空字符串为 True。

>>> print(bool(''), bool(""), bool(""""""))False False False>>> print(bool('foo'), bool(" "), bool(''' '''))True True True

内置组合类型对象的 Boolean 判定方法:

Python 内置的组合数据类型包括:list、tuple、dict 和 set。它们是可以包含其他对象的“容器”。

当这些容器不含任何其他对象时,这些容器就是空的。若容器为空,容器对象就视作假;容器非空,容器对象就视作真。

>>> type([])>>> bool([])False>>> type([1, 2, 3])>>> bool([1, 2, 3])True

关键字 None 永远为假。

>>> bool(None)False

3,包含非 Boolean 类型操作数的逻辑表达式

非 Boolean 类型的值也可用在逻辑表达式中,通过 not、or 和 and 来修改或组合。表达式的计算结果依赖于这些非 Boolean 操作数的真假。

注意:这里,表达式的结果不一定是 Boolean 值!

not 作用于非 Boolean 操作数:

当 x 为:

not x 为:

真值

False

假值

True

例如:

>>> x = 3>>> bool(x)True>>> not xFalse>>>>>> x = 0.0>>> bool(x)False>>> not xTrue

or 作用于非 Boolean 操作数:

当 x 为:

x or y 为:

真值

x

假值

y

例如:

>>> x = 3>>> y = 4>>> x or y3>>> x = 0.0>>> y = 4.4>>> x or y4.4

and 作用于非 Boolean操作数:

当 x 为:

x and y 为:

真值

y

假值

x

例如:

>>> x = 3>>> y = 4>>> x and y4>>> x = 0.0>>> y = 4.4>>> x and y0.0

4,复合表达式与短路求值

我们在上文列举的例子都是使用了一个运算符和至多两个操作数:

x or yx and y

实际上,多个运算符和操作数也可以连在一起使用,形成复合逻辑表达式。

复合 or 表达式形式如下:

x1 or x2 or x3 or ... xn

当 xi 中任一操作数为True 时,表达式为 True。

在处理这类包含多个逻辑运算符的表达式时,Python 采用“短路求值”法来计算表达式的值。解释器会从左向右逐一计算每个操作数 xi 的值。一旦遇到一个 xi 的值为 True,整个表达式就被认为是 True,此时,解释器不再继续向右计算,表达式的值就是最后那个已计算的 xi 操作数的值。

请注意体会“表达式的真假值”和“表达式的值”的区别,我们有时候会混用这两个概念。

为便于理解“短路求值”,我们可以设计一个简单的函数 f(),该函数的功能为:

f() 接受一个单一的值作为参数

f() 将参数输出到控制台

f() 将参数作为返回值返回

这是几个调用 f() 的例子:

>>> f(0)-> f(0) = 00>>>>>> f(False)-> f(False) = FalseFalse>>>>>> f(1.5)-> f(1.5) = 1.51.5

我们可以向 f() 传递具有真值或假值的参数,以使得 f(arg) 的值也为真或假。并且,通过控制台的输出,我们能看到复合逻辑表达式中某一部分是否被调用了。

来看下边这个复合逻辑表达式:

>>> f(0) or f(False) or f(1) or f(2) or f(3)-> f(0) = 0-> f(False) = False-> f(1) = 11

按照上边的介绍,f(0)、f(False) 依次被调用,直到 f(1) 为 True 时,表达式已能被判定为 True,计算到此结束,表达式的值就是 f(1) 的值。f(2) 和 f(3) 不会被执行到。

复合 and 表达式形式如下:

x1 and x2 and x3 and ... xn

所有 xi 均为 True,表达式才为 True。

短路求值对复合 and 表达式的处理逻辑为:从左到右依次计算每个操作数的真假值,一旦遇到一个 xi 的值为 False,整个表达式就被判定为 False,计算结束,表达式的值就是最后那个已计算的 xi 操作数的值。

仍使用 f() 函数来看两个例子:

>>> f(1) and f(False) and f(2) and f(3)-> f(1) = 1-> f(False) = FalseFalse>>>>>> f(1) and f(0.0) and f(2) and f(3)-> f(1) = 1-> f(0.0) = 0.00.0

这两个表达式的计算过程都停止在第一个为假值的操作数上:f(False)、f(0.0),表达式的值分别为 False 和 0.0。后边的 f(2) 和 f(3) 没有被调用。

如果所有的操作数都是真值,那么它们都会被计算,最后一个操作数的值就是表达式的值。

>>> f(1) and f(2.2) and f('bar')-> f(1) = 1-> f(2.2) = 2.2-> f(bar) = bar'bar'

短路求值在实际应用中有一些惯用场景:

a, 避免出现异常

假设有两个变量:a 和 b。我们想要判断 (b / a) 是否大于 0.

>>> a = 3>>> b = 1>>> (b / a) > 0True

这里,需要注意 a 的值不能为 0,否则会导致异常:

>>> a = 0>>> b = 1>>> (b / a) > 0Traceback (most recent call last):File "", line 1,

in ZeroDivisionError: division by zero

我们可借助短路求值避免这种异常:

>>> a = 0>>> b = 1>>> a != 0 and (b / a) > 0False

a 为 0 时,a != 0 为假值,and 表达式求值结束,右边的除法运算不会执行到。

对于这个问题,我们还可以写出更简单的表达式:

>>> a = 0>>> b = 1>>> a and (b / a) > 00

作为数字,a 为 0 时,其就是一个假值,and 表达式也会结束求值过程。

b, 选择默认值

为变量赋值时,若遇到 0 或 空值,可借助短路求值为变量赋一个默认值。

比如,我们想使用字符串 s2 为字符串 s1 赋值,如果 s2 为空字符串,我们可以为 s1 指定一个默认值。

>>> s2 = "World">>> s1 = s2 or 'Hello'>>> s1'World'>>>>>> s2 = ''>>> s1 = s2 or 'Hello'>>> s1'Hello'

5,链式比较

在 Python 中,多个比较运算符可以串联起来使用。

比如,下边这两个表达式基本相同:

>>> x >> x 

它们有一点区别:y 的计算次数不同。x < y <= z 中,y 只计算一次;x < y and y <= z 中,y 会被计算两次。

如果 y 只是一个静态值,比如 1,这种差别微乎其微。但假如 y 是一个复杂的表达式,少一次计算可能会带来可观的效率上的提升。例如:

x < f() <= zx < f() and f() <= z

更一般的情况,如果 op1、op2、op...、opn 是比较运算符,那么下边的表达式具有相同的 Boolean 值:

x1 op1 x2 op2 x3 ... opn xnx1 op1 x2 and x2 op2 x3 and x3 ... opn xn

同样,前者中的 xi 只计算一次,而后者中的非首尾的 xi 会计算两次,除非计算提前结束。

【位操作运算符】

位操作运算符将操作数视为二进制序列,对操作数进行逐位运算。

下表列举了 Python 支持的位操作运算符。

运算符例子含义结果

&

a & b

按位与

两个操作数对应位相与(全1则1,否则为0)

|

a | b

按位或

两个操作数对应位相或(有1则1,全0为0)

~

~a

取反

对操作数的每一位取反(0则1,1则0)

^

a ^ b

异或

两个操作数对应位异或(异则1,同则0)

>>

a >> n

右移

将操作数右移n位

<<

a << n

左移

将操作数左移n位

看一些例子:

>>> '0b{:04b}'.format(0b1100 & 0b1010)'0b1000'>>> '0b{:04b}'.format(0b1100 | 0b1010)'0b1110'>>> '0b{:04b}'.format(0b1100 ^ 0b1010)'0b0110'>>> '0b{:04b}'.format(0b1100 >> 2)'0b0011'>>> '0b{:04b}'.format(0b0011 << 2)'0b1100'

这里,以二进制的形式来表示操作数和运算结果,可以清晰地看出位运算的执行逻辑。

【ID 运算符】

id 运算符用于判断两个操作数是否拥有相同 id,也即是否指向同一对象。

这和“相等”不是同一个概念,相等表示两个操作数的值相等,而它们不一定指向同一个对象。

Python 提供 is 和 is not 两个 id 运算符。

看一些例子:

>>> a = 798>>> b = 798>>> a == b #相等True>>> a is b #id 不同False>>>>>> a = 798>>> b = a>>> a is b  #a、b 指向同一对象,id 相同True

【运算符的优先级】

我们都知道算术中的混合运算可以包含多种运算符,这些运算符可改变运算顺序。

>>> 20 + 4 * 1060

在这个例子中,同时存在 + 和 * 两种运算符,按照算术规则,先算乘法后算加法,乘法优先级高于加法。

Python 中的每个运算符也都有一定的优先级。优先级高的运算符先被执行,优先级相同的运算符按照从左向右的顺序执行。

我们目前已使用了多种运算符,按优先级从低到高列表如下:

运算符描述

最低优先级

or

Boolean 或

and

Boolean 且

not

Boolean 非

==、!=、、>=、is、is not

比较运算、id运算

|

按位或

^

异或

&

按位与

<>

移位操作

+、-

加减

*、/、//、%

乘除、地板除、取模

+x、-x、~x

一元正负、按位取反

最高优先级

**

幂运算

看一些例子:

>>> 2 * 3 ** 4 * 5810

括号可以改变运算符的优先级,并且有助于理解运算的先后顺序。

>>> 20 + 4 * 1060>>> (20 + 4) * 10240>>> 2 * 3 ** 4 * 5810>>> 2 * 3 ** (4 * 5)6973568802

【扩展的赋值运算符】

赋值(=)运算符用于为变量赋值。既可以为变量赋静态值,也可以为其赋予一个包含其他变量的表达式,并且表达式中还可以包含变量自身。

>>> a = 10>>> b = 20>>> c = a * 5 + b>>> c70>>> a = a + 5>>> a15>>> b = b * 3>>> b60

对于 a=a+5、b=b*3 这种赋值形式,其含义是在变量自身基础上再进行赋值操作。其前提是,变量必须已经被赋予了初值,否则导致错误。

>>> i = i / 12Traceback (most recent call last):File "", line 1,

in NameError: name 'i' is not defined

Python 为上边这种赋值方式提供了一个简写形式:

x = y

这种简写等同于:

x = x y

支持这种扩展赋值方式的运算符包括:

+、=、*、/、%、//、**、&、|、^、>>、<<

看一些例子:

>>> a = 5>>> a += 2>>> a7>>> b = 16>>> b /= 4>>> b4.0

【结语】

本文详细介绍了 Python 提供的各种运算符,以及如何这些运算符来生成表达式。

特别指出了浮点比较运算、短路求值等细节性问题,相信会对你理解和使用运算符和表达式提供帮助。

我们接下来会学一个非常重要的数据类型:字符串。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值