我在过去的一篇论文中有一个问题,要求将设计作为最小化的产品总和,并且仅使用与非门,一个采用4位二进制输入并将该数乘以3的模块(模16)
这是我得出的真值表
Inputs Outputs
w x y z | a b c d
0 0 0 0 | 0 0 0 0
0 0 0 1 | 0 0 1 1
0 0 1 0 | 0 1 1 0
0 0 1 1 | 1 1 0 0
0 1 0 0 | 1 0 0 0
0 1 0 1 | 1 1 1 0
0 1 1 0 | 0 1 0 0
0 1 1 1 | 1 0 1 0
1 0 0 0 | 0 0 0 0
1 0 0 1 | 0 1 1 0
1 0 1 0 | 1 1 0 0
1 0 1 1 | 0 0 1 0
1 1 0 0 | 1 0 0 0
1 1 0 1 | 1 1 1 0
1 1 1 0 | 0 1 0 0
1 1 1 1 | 1 0 1 0
从这里我创建了4张卡诺图:
wx|yz|00 01 11 10
_____|___________
00 |0 0 1 0
01 |1 1 1 0
11 |1 1 1 0
10 |0 0 0 1
(a)
wx|yz|00 01 11 10
_____|___________
00 |0 0 1 1
01 |0 1 0 1
11 |0 1 0 1
10 |0 1 0 1
(b)
wx|yz|00 01 11 10
_____|___________
00 |0 1 0 1
01 |0 1 1 0
11 |0 1 1 0
10 |0 1 1 0
(c)
wx|yz|00 01 11 10
_____|___________
00 |0 1 0 0
01 |0 0 0 0
11 |0 0 0 0
10 |0 0 0 0
(d)
以下是我的问题:这些卡诺 Map 中是否有任何不关心的条件 . 我该怎么判断是否有?
此外,这将给我四个布尔表达式,产生4个独立电路 . 我是否需要将它们连接在一起作为一个大电路?
最后,是否有一些机械程序可以应用于最终的布尔表达式,以便转换为NAND门?