matlab线性平面映射求通项_李尚志《线性代数》习题本

e3646323eb1bd4e01b230780f3046652.png

本文收集了我对李尚志教授的《线性代数》书中习题给出的解答。有兴趣的知友可在评论区对内容提出意见。

第二章 第六节

习题4

是所有的正实数组成的集合。对任意
定义
(实数
按通常乘法的乘积),对任意
定义
。求证:

(1)

按上述定义的加法
和数乘
成为实数域
上的线性空间。

(2)实数集合

按通常方式定义加法和乘法看成
上的线性空间,求证:通常的这个线性空间
与按上述方式定义的线性空间
同构。并给出这两个空间之间的全部同构映射。

(1)的证明:

,有
(正数之积仍为正,并且其值唯一)。

,有
(正数的任意次幂为正,且其值唯一)。

中的零向量则定义为
,这就使得
成立。

验证可知

上定义的加法和数乘满足八条基本运算律,这里就不一一呈现了。所以,题目所述的
满足线性空间的定义。

(2)的证明:

同构,则存在双射
,并满足
这两个条件。

注意到对数函数

有着相同的定义域和值域,且同为双射,那么不妨令
试试。此时有
以及
成立,于是知道了
间的同构映射,
同构。
两空间之间的所有同构映射包含在集合中——

证完。

第二章 第七节

习题4

举出满足下面条件的例子:子空间

的两两的交是
,但
不是直和。

分别是平面
中的
条直线
,且它们全部都只有一个公共点,这样就满足了子空间
的两两的交是
的条件。

任取非零向量

,从
只有一个公共点可知
不共线;则
的全体线性组合组成平面

可知
,因此有
,使得
成立,这也就是
。(
为非零向量)

然而这样一来,对于各向量

而言,
对应的可能是
等别的情况。这就不满足
定理2.7.4(子空间之和为直和的充要条件);此知
符合题目所述的要求,可作为例子提出。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值