贝叶斯软件genle教程_如何利用R语言进行meta分析—详细教程(2)

这篇教程详细介绍了如何利用R语言的metaplus包进行meta分析,包括离群值检测与meta回归。通过具体例子展示了标准正态、t分布和混合随机效应模型的模型拟合,以及如何使用testOutliers和outlierProbs函数进行离群值检验。此外,还讨论了模型选择和meta回归的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

17c498301c14317ae26ac88cb6717433.png

如何利用R语言进行meta分析—详细教程(2)

--(如何在meta分析中进行离群值检测与meta回归)

  • 小伙伴们大家好,在我上一篇的推文里详细讲解了如何利用R语言的meta包并以OR值和 95%CI作为效应尺度进行合并作meta分析的文章,大家有需要的可以去看看。由于最近我做了不少关于meta分析的研究,也有了更多的经验,现在计划一点点向大家分享出来。其实meta分析并不只是用R才能做,其他的还有SAS,STATA,RevMan,MIX,Meta-DiSc等等许多,但是可以说R语言是个meta分析的全才,不仅可以完成经典的meta分析功能,一些新近出现的meta分析方法如网状meta分析等,也都可以用它完美实现,而且我也发现用R做的话,它的代码其实并不多,就那么几行核心代码,但是能做的事情却很多,许多的数据一丢进来,跑个代码就OK。所以我还是推荐大家用R做meta分析,它并不像大家想象的那么难。不过当然,这里面不同的分析方法和程序却有很多,在这篇文章例我主要向大家介绍metaplus包的使用方法,请小伙伴们结合自己的实际需要进行使用。
  • 对于meta分析的理论部分还有R软件包以及RStudio的获取大家可以看我公众号(全哥的学习生涯)的上一篇推文《如何利用R语言进行meta分析—详细教程(以OR值和 95%CI作为效应尺度进行合并)》,在这里就不赘述了。metaplus 程序包是 R 专用于实现 robust meta 分析和 Meta 回归的程序包metaplus 程序包,总体上可以分为 Meta 分析和Meta回归两大功能。其主要执行函数命令有metaplus 函数、testOutliers 函数和 outlierProbs 函数。其中,metaplus 函数用于模型拟合、选择合适模型及绘制森林图等;testOutliers 及 outlierProbs函数用于检测数据中的离群值。我们在这里以图1的数据为例(数据来源:The effectiveness of exercise as an intervention in the management of depression: systematic review and meta-regression analysis of randomised controlled trials, BMJ,2001, 322(7289): 763-767.),以data <- read.csv()命令录入到R中。[图1中的数据说明--study:纳入研究的作者名;smd(study effect estimate):研究效应量;varsmd(study effect variance):研究效应量的方差;sesmd(study effect standard error):研究效应量的标准误;duration:干预时间,单位为周;duration4:干预时间与 4 周差值;duration8:干预时间与8周差值;duration12:干预时间与 12 周差值] 。
  • 若有读者想与我取得联系,可以在关注我的公众号:全哥的学习生涯,公众号内有我的个人联系方式~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值