matlab lbp特征,lbp特征(lbp纹理特征提取)

LBP特征广泛用于人脸检测与识别,通过将图像分块并计算每个区域的LBP直方图,形成整体特征。此外,针对传统LBP算子的局限性,发展了圆形领域LBP以适应不同尺度纹理。在交通标志检测中,HOG-LBP融合特征提高了检测效果。同时,LBP与其他特征如SIFT、PCA等一起,构成了丰富的特征提取方法库。在实际应用中,例如医学图像分割和人脸识别,LBP也发挥着重要作用。
摘要由CSDN通过智能技术生成

LBP特征被用在人脸检测与识别的过程中。将人脸分成N个矩形区域,对图像进行LBP变换,求出每个区域的LBP直方图,将这N个直方图拼接成一个新的直方图,并用该直.

圆形LBP算子基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达.

针对禁令交通标志牌提出了一种基于HOG-LBP自适应融合特征的交通标志检测方法,将标志图片等分为多个不重叠的块,每块内将加权后的HOG和LBP特征进行串行融合.

matlab自带的检测算子,比如sobel,roberts,prewitt,laplacian等等。所谓梯度增强,在图像处理中即为边缘检测,因为边缘就是梯度变化较大的地方。

对LBP特征向量进行提取的步骤 (1)首先将检测窗口划分为16*16的小区域(cell);(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素.

圆形领域和各种模式的代码,分开的

参考一下这个 http://www.mathworks.com/matlabcentral/fileexchange/36484-local-binary-patterns

阅面科技的人脸关键点检测算法可以适用于各种姿态,角度、和表情变化的人脸,并且安装包仅有4M多大小,速度很快,可以实时对中的关键点进行检测。

还行

大家都来说说特征提取都有那些方法!交流交流

投影特征提取,13网格特征,逐像素特征提取,Hu不变特征提取,Zernike提取方法,Lbp纹理特征提取,sift特征提取,PCA特征提取

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值