LBP特征被用在人脸检测与识别的过程中。将人脸分成N个矩形区域,对图像进行LBP变换,求出每个区域的LBP直方图,将这N个直方图拼接成一个新的直方图,并用该直.
圆形LBP算子基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达.
针对禁令交通标志牌提出了一种基于HOG-LBP自适应融合特征的交通标志检测方法,将标志图片等分为多个不重叠的块,每块内将加权后的HOG和LBP特征进行串行融合.
matlab自带的检测算子,比如sobel,roberts,prewitt,laplacian等等。所谓梯度增强,在图像处理中即为边缘检测,因为边缘就是梯度变化较大的地方。
对LBP特征向量进行提取的步骤 (1)首先将检测窗口划分为16*16的小区域(cell);(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素.
圆形领域和各种模式的代码,分开的
参考一下这个 http://www.mathworks.com/matlabcentral/fileexchange/36484-local-binary-patterns
阅面科技的人脸关键点检测算法可以适用于各种姿态,角度、和表情变化的人脸,并且安装包仅有4M多大小,速度很快,可以实时对中的关键点进行检测。
还行
大家都来说说特征提取都有那些方法!交流交流
投影特征提取,13网格特征,逐像素特征提取,Hu不变特征提取,Zernike提取方法,Lbp纹理特征提取,sift特征提取,PCA特征提取
<