大数据专家已经意识到Spark和Python在标准JVM上的重要性,但是围绕“ Scala或Python是大数据项目中的哪个选择”这一话题存在着共同的争论。两者之间的差异可以根据性能,学习曲线,并发性,类型安全性,可用性及其高级功能来确定。
根据不同数据专家的方便程度或应用程序类型,最终决定可能会有所不同。数据专家完全有责任根据功能解决方案和语言效率为Apache Spark项目选择最佳编程语言。
这很容易学习两种语言,无论是Scala还是Python。与Java相比,它使开发人员可以更快地提高生产效率。与Python相比,Scala通常更倾向于Apache Spark。对于不同的数据专家,原因可能有所不同。在这里,我们将为您提供两种语言的快速浏览,以深刻理解它们并根据您的项目要求选择最佳的一种。
根据性能区分Scala和Python
由于Java虚拟机的存在,Scala比Python快十倍,而Python在数据分析和有效数据处理的性能方面则较慢。Python首先调用涉及大量代码处理的Spark库,并且性能自动降低。
同时,当内核数量有限时,Scala很好。如果他们的人数增加,那么Scala也会开始表现出怪异的行为,并且不被专业人员所喜欢。这里,问题来了,性能应该基于内核或数据处理来决定。显然,数据处理应视为性能的主要决定因素,毫无疑问,对于大数据Apache Spark项目,Scala的性能要优于python。
根据学习曲线区分Scala和Python
Scala的语法有些棘手,而Python由于简单的语法和标准库而易于学习。数据专业人员在使用Scala时必须非常谨慎。语法错误很常见,有时会使您发疯。