//最大堆排序
public class HeapSort {
public static void main(String[] args) {
int a[] = new int[]{4,1,3,2,16,9,10,14,8,7};
buildHeap(a);
System.out.println("构建好的最大堆是:");
for(int x:a)
System.out.print(x+" ");
System.out.println();
System.out.println("排序的结果是:");
heapMain(a);
for(int x:a)
System.out.print(x+" ");
}
public static void buildHeap(int a[]){
int n = a.length;
for(int i=n/2-1;i>=0;i--) {//i从第一个非叶子结点开始
maxHeapify(a, i,a.length);
}
}
public static void maxHeapify(int a[],int i,int heapSize){
int maxIndex = i;
if(2*i+1<=heapSize-1&&a[2*i+1]>a[i])
maxIndex = 2*i+1;
if(2*i+2<=heapSize-1&&a[i*2+2]>a[maxIndex])
maxIndex = 2*i+2;
if(maxIndex !=i){
int tmp = a[maxIndex];
a[maxIndex] = a[i];
a[i]=tmp;
maxHeapify(a, maxIndex,heapSize);
}
}
public static void heapMain(int a[]){
int heapSize = a.length;
for(int i=a.length-1;i>0;i--){
int tmp=a[0];
a[0]=a[i];
a[i]=tmp;
heapSize-=1;
maxHeapify(a, 0, heapSize); //在heapSize范围内根结点的左右子树都已经是最大堆
}
}
}
今天翻了一下算法导论上的堆排序,复习了一下本科的知识,用java语言实现了一个基本的例子。
运行结果:
构建好的最大堆是:
16 14 10 8 7 9 3 2 4 1
排序的结果是:
1 2 3 4 7 8 9 10 14 16
其实核心思想就是maxHeapify(int a[],int i,int heapSize)函数
就是以下标为i的结点作为根的树构造堆,这是一个递归的算法,要求i的左子树和右子树已经是最大堆了,这时候比较i和它左右直接结点的大小,如果a[i]还是最大,那么它已经是最大堆。如果进行了交换,那么被交换的那个直接结点(左或者右的大的那一个)所领导的子树就不再是最大堆了,所以要继续递归执行下去。这也解释了在bulidHeap方法中,为什么i是从后往前走的,从一个非叶子往上面构造(叶子结点本来就是最大堆了),才能保证每一个结点的左右子树都已经是最大堆。