python中pandas用法iloc,Python Pandas .iloc[]用法及代码示例

Python是进行数据分析的一种出色语言,主要是因为以数据为中心的Python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。

Pandas 提供了一种独特的方法来从 DataFrame 中检索行。当 DataFrame 的索引标签不是数字序列0、1、2、3….n或用户不知道索引标签时,将使用Dataframe.iloc []方法。可以使用在 DataFrame 中不可见的虚构索引位置提取行。

用法:pandas.DataFrame.iloc[]

参数:

Index Position:行在整数或整数列表中的索引位置。

返回类型: DataFrame 或系列取决于参数

要下载代码中使用的CSV,请点击此处。

范例1:提取单行并与.loc []比较

在此示例中,通过.iloc []和.loc []方法提取相同的索引号行并进行比较。由于索引列默认情况下是数字列,因此索引标签也将是整数。

# importing pandas package

import pandas as pd

# making data frame from csv file

data = pd.read_csv("nba.csv")

# retrieving rows by loc method

row1 = data.loc[3]

# retrieving rows by iloc method

row2 = data.iloc[3]

# checking if values are equal

row1 == row2

输出:

如输出图像所示,两种方法返回的结果相同。

3abaefbe7c8e07afe008fb8fccbdf91d.png

范例2:使用索引提取多行

在此示例中,首先通过传递列表来提取多个行,然后通过传递整数来提取该范围之间的行。之后,将两个值进行比较。

# importing pandas package

import pandas as pd

# making data frame from csv file

data = pd.read_csv("nba.csv")

# retrieving rows by loc method

row1 = data.iloc[[4, 5, 6, 7]]

# retrieving rows by loc method

row2 = data.iloc[4:8]

# comparing values

row1 == row2

输出:

如输出图像所示,两种方法返回的结果相同。除“大学”列中的值是NaN值外,所有值均为True。

b1d678c4d865993da2522cdb776e4268.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值