用matlab求解传递矩阵,传递矩阵法求简支梁固有频率的近似解 --matlab程序

该博客介绍了如何使用MATLAB的传递矩阵法来求解简支梁的固有频率,提供了详细的MATLAB代码实现,并通过比较求得的近似解与精确解展示了方法的有效性。
摘要由CSDN通过智能技术生成

%传递矩阵法求简支梁固有频率的近似解

clc

clear

syms p q

Sp = sym(‘[1 0 0 0;0 1 0 0;0 0 1 0;x 0 0 1]‘); %点传递矩阵

Sf = sym(‘[1 1 1/2 1/6;0 1 1 1/2;0 0 1 1;0 0 0 1]‘); %场传递矩阵

n = input(‘输入划分单元数:‘);

S = ((Sf*Sp)^(n-1))*Sf; %两端支座之间的传递矩阵

%求固有频率

xs = solve(S(1,2)*S(3,4)-S(1,4)*S(3,2));

xs = sort(double(xs));

xt = xs*n^4;

xt = sqrt(xt);

xe(1:n-1) = (pi*(1:n-1)).^2; %精确解

xe = xe‘;

fprintf(‘传递矩阵法的结果:\n‘)

for i = 1:n-1

fprintf(‘第%d阶固有频率:%8.4f(EI/ml^3)^(1/2)\n‘,i,xt(i))

end

%求模态

step = 1/n;

for i = 1:n-1

f0 = -S(3,2)/S(3,4);

f0 = subs(f0,‘x‘,xs(i));

xk(:,1) = [0 1 0 f0]‘;

for j = 2:n+1

xk(:,j) = Sf*Sp*xk(:,j-1);

xk(:,j) = subs(xk(:,j),‘x‘,xs(i));

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值