求传递函数矩阵 matlab实现

最近在看清华大学的博士论文:马克西姆. 贫预混燃烧振荡的自抗扰控制[D].清华大学,2017.

其中有一推导如下,自己手推其实很费劲,下面介绍如何用matlab进行符号运算:

 

要用到的公式来自现代控制理论的教材,一般现控书都会给出状态空间表达式到传递函数矩阵是如何推导的,所以就不说是哪一本了

 

matlab代码:

 

clear all %/清空工作区

syms s beta1 beta2 b0 u y;%/声明要用到的符号变量

I=eye(2)%/eye函数用于创建一个二阶单位阵

A=[-beta1 1;-beta2 0];%/照着论文打A矩阵

B=[b0 beta1;0 beta2];%/同上

F=inv(s*I-A);%/inv函数用来对矩阵取反

collect(F*B)%/collect函数是合并同类项

 

 

运行结果:

 

 

ans =

 

[      (b0*s)/(s^2 + beta1*s + beta2), (beta1*s + beta2)/(s^2 + beta1*s + beta2)]

[ (-b0*beta2)/(s^2 + beta1*s + beta2),         (beta2*s)/(s^2 + beta1*s + beta2)]

 

可以看到与论文中给出的相同。

用matlab求传递函数矩阵就是这么简单,本文结束啦。

 

本文结束啦。

 

<think>好的,我现在需要帮助用户找到关于空间管路振动冲击传递矩阵法的Matlab实现代码示例。首先,我需要理解用户的问题。用户提到的“空间管路振动冲击传递矩阵法”应该是指使用传递矩阵法(Transfer Matrix Method, TMM)来分析管路系统在振动和冲击下的动态响应。传递矩阵法在机械振动分析中确实常用,尤其是处理链式结构如管路、轴系等。 接下来,我需要考虑用户的具体需。他们可能正在研究或设计管路系统,需要模拟振动冲击的传递特性,因此需要Matlab代码作为参考。传递矩阵法的核心在于将系统分解成多个单元,每个单元的动力学特性用传递矩阵表示,然后通过矩阵相乘得到整体传递特性。 用户可能对传递矩阵法的基本原理已经有一定了解,但需要具体的实现步骤和代码示例。因此,我应该先简要回顾传递矩阵法的基本理论,然后给出一个简化的Matlab代码框架,帮助用户理解如何将理论转化为代码。同时,我需要确保代码结构清晰,注释详细,方便用户调整参数和扩展。 然后,我需要考虑可能的相关问题,用户可能会有后续疑问,比如如何处理复杂边界条件、如何验证模型的正确性、如何优化计算效率等。因此,在回答中生成相关问题也是有必要的,帮助用户进一步探索。 在编写代码示例时,需要注意几点:首先,传递矩阵法的具体形式取决于管路单元的动态模型,比如是否考虑弯曲、扭转、流体结构相互作用等。由于用户的问题比较广泛,可能需要假设一个简化的模型,比如纵向振动的杆单元。其次,代码需要展示如何组装传递矩阵,如何处理边界条件(如固定端或自由端),以及如何计算频响函数或冲击响应。 另外,需要验证代码的正确性,比如通过对比解析解或已有文献结果。但由于时间和资源限制,可能无法提供完整的验证步骤,但可以建议用户进行简谐激励下的响应分析,观察共振频率是否符合理论预期。 最后,确保回答符合用户的要:使用中文,数学公式用$...$和$$...$$格式,结构清晰,引用相关文献,并生成相关问题。同时,检查是否有站内引用需要添加,但根据用户提供的参考,似乎没有特定的文献需要引用,因此可能需要自行添加通用引用或建议查阅相关教材和论文。</think>以下是与空间管路振动冲击传递矩阵法相关的Matlab实现说明和示例框架: # 传递矩阵法基本原理 传递矩阵法通过建立管路单元的$4×4$状态向量传递关系,将管路振动微分方程转换为矩阵形式。对于第$i$个管路单元,状态向量满足: $$ \{Z\}_{i+1} = [T]_i\{Z\}_i $$ 其中$[T]_i$为单元传递矩阵,包含几何参数和材料特性[^1] # Matlab实现框架 ```matlab % 管路参数定义 L = 1; % 单元长度(m) E = 210e9; % 弹性模量(Pa) rho = 7850; % 密度(kg/m³) A = pi*(0.05^2 - 0.048^2); % 截面积(m²) % 构建单元传递矩阵 function T = ElementTransferMatrix(w) % w为激振频率(rad/s) k = sqrt(rho*A*w^2/(E*A)); T = [cos(k*L) sin(k*L)/(E*A*k) -1/(E*A*k^2) 0; -E*A*k*sin(k*L) cos(k*L) 0 -1/(k); ...]; % 根据具体理论模型补全矩阵元素 end % 系统传递矩阵组装 total_T = eye(4); for n = 1:N_elements total_T = total_T * ElementTransferMatrix(w); end % 边界条件处理(示例固定-自由边界) % 固定端: 位移=0,自由端: 力=0 boundary_matrix = [1 0 0 0; 0 1 0 0]; system_matrix = boundary_matrix * total_T; % 解特征频率 det_func = @(w) det(system_matrix); freq = fzero(det_func, init_guess); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值