俄罗斯科学家量子计算机进展,俄、德科学家创造出“不可能”的量子计算机材料...

123506324_1_20180130105848456.jpg

由俄罗斯国立科技大学超导超材料实验室负责人Alexei Ustinov教授指导的研究人员创造了世界上第一个基于超材料的“镜像”量子比特(mirror qubit),它可以用作超导电子线路的控制元件。

俄罗斯国立科技大学的科学家与来自德国卡尔斯鲁厄大学和耶拿莱布尼茨光子学技术研究所(Leibniz Institute of Photonic Technology in Jena)的研究人员,共同合作取得了这项突破性进展。

量子计算的出现和量子比特的产生早已被认定为可以创造元原子构成的材料,其状态只能通过量子力学原理来定义,而不是经典物理方程。一直以来,这些想法仍然局限于理论领域,因为它们需要创造特殊的量子比特。

MISiS实验室研究员基里尔·舒尔加(Kirill Shulga)解释说:“一个典型的量子比特由一个包含三个约瑟夫森结的方案组成,指的是由用于构建传统量子比特的两个超导电极组成的量子力学器件。”

但另一方面,俄罗斯和德国研究人员的新“镜像”超材料设备“有五个过渡,与中轴对称”,舒尔加补充说,“我们可以把镜像量子比特想象成一个比普通的超导量子比特更复杂的系统。”

123506324_2_20180130105848972.jpg

图:镜像量子比特链的显微照片,分别为每厘米表示5微米和每厘米表示20微米的分辨率。圆圈表示约瑟夫森结进入一个单一的量子比特。

科学家指出:“这里的逻辑很简单,用一个复杂的系统,其空间自由度更大,影响其性质的因素也更多。改变我们的超材料的一些外部环境参数,能够灵活打开和关闭这些属性,将镜像量子比特从一种基本状态转移到另一种基本属性。”

在实验过程中,研究人员发现镜像量子比特的超材料可以在两种模式之间切换:首先,量子比特链允许电磁辐射在微波范围内自由通过,同时保持一个量子元件。第二,它锁定了电磁波的通道,同时又构成一个量子系统。

正如MISiS实验室工程师Ilya Besedin所述,在磁场的帮助下,这种超材料可以被用作在现在正在开发的量子计算机各种线路中传输量子信号(即单个光子)的系统中的控制元件。

123506324_3_20180130105849284.jpg

图:MISiS超材料实验室工程师Ilya Besedin

由于镜像量子比特比传统量子比特复杂几倍,所以这种复杂性理论上可以匹敌甚至超越现代电子计算机的能力,因此这种系统可以用作量子模拟器。

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的现,先后涌现LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
屋顶面板实例分割数据集 一、数据集基础信息 • 数据集名称:屋顶面板实例分割数据集 • 图片数量: 训练集:1559张图片 验证集:152张图片 测试集:95张图片 总计:1806张图片 • 训练集:1559张图片 • 验证集:152张图片 • 测试集:95张图片 • 总计:1806张图片 • 分类类别: panel(面板):屋顶上的面板结构,如太阳能板或其他安装组件。 roof(屋顶):建筑屋顶区域,用于定位和分割。 • panel(面板):屋顶上的面板结构,如太阳能板或其他安装组件。 • roof(屋顶):建筑屋顶区域,用于定位和分割。 • 标注格式:YOLO格式,包含实例分割的多边形标注,适用于实例分割任务。 • 数据格式:图片文件,来源于航拍或建筑图像,涵盖多种场景。 二、数据集适用场景 • 建筑与施工检查:用于自动检测和分割屋顶上的面板,辅助建筑质量评估、维护和安装规划。 • 可再生能源管理:在太阳能发电系统中,识别屋顶太阳能板的位置和轮廓,优化能源部署和监控。 • 航拍图像分析:支持从空中图像中提取建筑屋顶信息,应用于城市规划、房地产评估和基础设施管理。 • 计算机视觉研究:为实例分割算法提供基准数据,推动AI在建筑和能源领域的创新应用。 三、数据集优势 • 精准实例分割标注:每个面板和屋顶实例均通过多边形标注精确定义轮廓,确保分割边界准确,支持细粒度分析。 • 类别聚焦与实用性:专注于屋顶和面板两个关键类别,数据针对性强,直接适用于建筑和能源行业的实际需求。 • 数据多样性与泛化性:涵盖同环境下的屋顶和面板图像,增强模型在多变场景中的适应能力。 • 任务适配便捷:标注兼容主流深度学习框架(如YOLO),可快速集成到实例分割模型训练流程。 • 行业价值突:助力自动化检测系统开发,提升建筑检查、能源管理和城市分析的效率与准确性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值