单变量求解C语言,二分法求解单变量非线性方程及其应用与实现.doc

二分法求解单变量非线性方程及其应用与实现

论文关键词:二分法  单变量 非线性方程 收敛性  误差

论文摘要:本文主要通过一个实例来研究单变量非线性方程f(x)=0的二分法求解及此方法的收敛性,根据误差估计确定二分次数并进行求解。同时实现matlab和C语言程序编写。从而掌握过程的基本形式和二分法的基本思想,在以后的学习过程中得以应用。

1. 引 言

在科学研究与工程技术中常会遇到求解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有求根公式,而高于四次的代数方程则无精确的求根公式,至于超越方程就更无法求其精确解了。因此,如何求得满足一定精度要求的方程的近似根也就成为了我们迫切需要解决的问题。近年来,随着数学科学研究的不断进展,又更新了许多方程求解的方法。我们知道,对于单变量非线性方程f(x)=0,一般都可采用迭代法求根,由此产生了二分法。

2. 二分法

一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。

解方程即要求f(x)的所有零点。

先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],    现在假设f(a)<0,f(b)>0,a

①如果f[(a+b)/2]=0,该点就是零点,

如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用中点函数值判断。

如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用中点函数值判断。

这样就可以不断接近零点。

通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。

给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下:

1. 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ.

2. 求区间(a,b)的中点c.

3. 计算f(c).

(1) 若f(c)=0,则c就是函数的零点;

(2) 若f(a)·f(c)<0,则令b=c;

(3) 若f(c)·f(b)<0,则令a=c.

4. 判断是否达到精确度ξ:即若┃a-b┃

由于计算过程的具体运算复杂,但每一步的方式相同,所以可通过编写程序来运算。

3. 实例引入

二分法求解单变量非线性方程的例子很多,仅以此例进行分析:

求方程f(x)=x³-x-1=0在区间[1.0,1.5]内的一个实根,要求准确到小数点后第2位。

4. 问题分析

对于以上单变量非线性方程,已知a=1.0,b=1.5,采用二分法求解。首先我们根据二分法所允许的误差范围求得应迭代次数。

二分法允许的误差公式:|x*- | ( - )/2=(b-a)/  0.005,

其中k为二分次数。

所以求得本题应二分6次达到预定的精度。

5. 解题过程

这里a=1.0,b=1.5,而f(a)<0,f(b)>0。[a,b]的中点x0=1.25,将区间二等分。由于f(x0)<0,即f(x0)与f(a)同号,故所求根x*必在x0右侧,这是应令a1=1.25,b1=1.5,得到新的有根区间[a1,b1].如此反复二分6次,结果如下:

K/二分次数 /区间

左边界值 /右边界值 F( )的符号

展开阅读全文

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值