从这周开始学习的机器学习,之前的我一直致力于学习信息系统这方面的知识,深知自己距离其他组员的差距还有很大,所以这段时间,还是以机器学习、深度学习、毕业论文主要学习方向,接下来还有六级、软件考试等,总之,事情做完了一件总会有其他事情过来找你。
我是跟着吴恩达老师和温州大学的黄海广老师的学习视频的,我看吴恩达老师的视频,他讲的通俗易懂,具体的项目实战利用的黄海广老师的实验课代码,具体代码可以到黄老师的公众号上去看。目前我也正在学习Numpy、pandas、matplotlib库,这些都是机器学习的必须要会的知识。
对于理论知识,文章中就不做介绍,况且,我对与理论知识的表达可能并不是很好,就不在写了,这篇博客主要来记录刚刚学的监督学习中的单变量回归利用正规方程解决。
一、准备数据集
数据集名称为:linear_regression.csv,其中只有一个变量人口,一个实际值收益,目的构造一个模型,拟合出人口与收益的关系。
人口,收益
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
1