一、二重积分的理解
二重积分的一般表示如下:
它最佳的理解方式是——平面薄片的质量,即平面薄片占据平面区域
, 在点
处的面密度为
,整个平面薄片的总质量就是将
累积遍整个平面区域
.
当然,二重积分也是一个“分割、近似、求和、取极限”的过程,将该过程压缩成一步到位,就是“二重积分”运算:
注1:
取所有
直径的最大值,该极限比一般极限要复杂的多(多了对任意分割);
注2:经过该过程,二重积分已经是一个精确值(不均匀平面薄片的精确质量)了;
注3:既然是任意分割,在直角坐标系下,按水平竖直分割,则微元面积
:
所以,二重积分也写为:
二、计算二重积分的基本原理直角坐标下的二重积分
二重积分是
在区域
上累积而得,而且与累积路径无关(二重积分定义保证),也就是说怎么累积遍下图中的小原点都是可以的:
那就选择一种规则的累积法:先竖着累积“小细带”,对每个
,把所有的
累积起来,记为
再把所有“小细带”横着累积起来,得到
于是,
当然换个方向考虑(先横着累积,再竖着累积)也是可以的,就得到:
综上,二重积分转化为累次积分,是将不方便直接计算的二重积分转化成方便计算的做两次定积分。
2. 极坐标下的二重积分
注意,影响上述计算的只有被积函数和积分区域的表达式。那么,若积分区域或被积函数在直角坐标系下,仍不方便计算呢?比如带
项。那就再转化为极坐标系下就方便计算了。
比如,这样一个区域:
用直角坐标
表示很困难,但换成极坐标则是非常简单的“矩形”:
所以,在极坐标系下,既然积分区域可以任意分割,那就按原点射线、圆环方向分割。此时,微元面积
怎么计算?
注意到,微元
很小,则圆弧边可近似看成直线,该面积可近似按“长×宽”来算:
其中,
就是那段弧长,这里虽然是
,但二重积分过程(分割、取极限)就能变成
.
因此,就有了二重积分化极坐标公式:
其中,
是
的极坐标表示。
注:实际上从直角坐标系到极坐标系的转化,是做了一种变换:
则
其中,该变换的雅可比行列式恰好等于
而已:
三、二重积分化累次积分的通用方法
根据前文原理:二重积分是在一块二维的积分区域上,对被积函数做累积;无论采用哪种二重积分化累次积分的方式,关键是要把积分区域用两个积分变量的范围“精确”的表示出来。
一旦表示出来,顺手就能写成累次积分,二重积分的计算就只剩下计算两次定积分。
两个积分变量的积分区域,一定可以用这两个变量的范围“精确”表示出来,谁在先谁在后都行,这样就必有两种表示法:以直角坐标为例,就是
• 先
后
• 先
后
这两种表示也保证了,二重积分必能按两种方式转化为累次积分。
这两种表示的规则也很统一和简单,找到两个变量的变化范围即可:
先看变量的范围是数值范围是: [最小值,最大值];
后看变量的范围是: [小的一侧曲线,大的一侧曲线];
若某一侧曲线不能统一写为一个表达式,则对“先看变量”分段处理。
这个规则同样适用于极坐标,当然极坐标下的变量的“大和小”需要专门学会区分。
极坐标下,积分区域也用直角坐标来画,从极坐标的角度来看即可。
角度
,从
度(
轴正向)逆时针到
,来看从小到大(用过原点的射线,角的终边衡量);
极径
,代表的是点到原点的距离,所以是从原点(最小极径
),到外侧圆环来看从小到大。具体操作在角度
的两条射线(终边)辅助下,从小的一侧曲线到大的一侧曲线,就是从内圈曲线,到外圈曲线。
以上原理非常简单,你只需要记住上述原则(已加粗),会正确地区分积分变量的大和小。
四、例题演示
下面用两道例题,帮你学会该方法。为了清楚,我写了很啰嗦的解释,上手之后只写每步结果就很简洁了。
例1 计算
, 其中
为抛物线
与直线
所围成的区域。
解:(1) 先画出积分区域
(2) “精确”表示区域
方法一:先
后
“先看变量”
是数值范围:[最小值, 最大值],
是下边小上边大,最小值在
点
处取到,最大值在
点
处取到,故
看一下所确定的范围:
可见,从
轴方向来看,积分区域
落在这两条横线中间。
“后看变量”
范围是:[小的一侧曲线,大的一侧曲线],
是左侧小右侧大,所以是从左侧曲线
到右侧曲线
左侧曲线
的表达式为:
右侧曲线
的表达式为:
于是,
注意:下方直线
,上方直线
, 左侧曲线
, 右侧曲线
, 恰好确定积分区域
, 即所谓的积分区域
“精确”表示。
因此,二重积分可化为如下的累次积分:
方法二:先
后
“先看变量”
是数值范围:[最小值, 最大值],
是左边小右边大,最小值在原点
处取到,最大值在
点
处取到,故
看一下所确定的范围:
可见,从
轴方向来看,积分区域
落在这两条竖线中间。
“后看变量”
范围是:[小的一侧曲线,大的一侧曲线],
是下方小上方大,所以是从下方曲线
到上方曲线
。
显然,下方曲线
不能统一用一个表达式表示,所以必须对
分段,要以
点作为分界点,注意到
点坐标为
, 故
再给图形增加
辅助线,积分区域
也被分为
和
:
(i) 对
区域,
:
小的一侧曲线为
, 其表示为
大的一侧曲线为
, 其表示为
故
.
(ii) 对
区域,
:
小的一侧曲线为
, 其表示为
大的一侧曲线为
, 其表示为
故
.
因此,二重积分可化为如下累次积分:
(3) 计算(略)。
注:实际中不用特意区分,直接“先
后
”,若不好算(需要分段或求积分困难),再“先
后
”即可。
例2 在极坐标下交换积分次序:
解:(1) 积分区域为“先
后
”表示:
(2) 在直角坐标系画出积分区域
先处理边界曲线:
再结合
的范围,得到积分区域
:
(3) 改用“先
后
”表示
最小值是
(原点),最大值在点
处为
,故
.
添加
(原点)和
辅助线,并标记若干点:
要从小的一侧曲线(负角度一侧,是
), 到大的一侧曲线(是
).
显然,
不能统一用一个表达式
表示,所以,必须对
进行分段。要以
点对应的
值作为分界点,注意到
点坐标为
, 故
再给图形加上
辅助线,该辅助线也将积分区域
分为
和
:
(i) 对
区域,
:
小的一侧曲线为
, 其表示为:
大的一侧曲线为
, 其表示为:
故
.
(ii) 对
区域,
:
小的一侧曲线为
,其表示为:
大的一侧曲线为
,其表示为:
故
因此,原二重积分可化为如下累次积分:
参考文献:
《高等数学》,同济版
原创文章,版权所有,转载请注明!