java贝叶斯分类器 开源,Weka机器学习:如何解释朴素贝叶斯分类器?

博客讨论了如何解释Naive Bayes分类器的结果。Naive Bayes不选择重要特征,其分类基于样本特征与'Yes'或'No'类别的均值和方差的匹配程度。建议使用决策树算法,如J48,来找到最具预测性的属性。Weka的Explorer提供了专门的选项来识别数据集中最有用的属性。

I am using the explorer feature for classification. My .arff data file has 10 features of numeric and binary values; (only the ID of instances is nominal).I have abt 16 instances. The class to predict is Yes/No.i have used Naive bayes but i cantnot interpret the results,,does anyone know how to interpret results from naive Bayes classification?

解决方案

Naive Bayes doesn't select any important features. As you mentioned, the result of the training of a Naive Bayes classifier is the mean and variance for every feature. The classification of new samples into 'Yes' or 'No' is based on whether the values of features of the sample match best to the mean and variance of the trained features for either 'Yes' or 'No'.

You could use others algorithms to find the most informative attributes. In that case you might want to use a decision tree classifier, e.g. J48 in WEKA (which is the open-source implementation of C4.5 decision tree algorithm). The first node in the resulting decision tree tells you which feature has the most predictive power.

Even better (as stated by Rushdi Shams in the other post); Weka's Explorer offers purpose build options to find the most useful attributes in a dataset. These options can be found under the Select attributes tab.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值