c语言直方图最大矩形面积,柱状图求最大矩形面积

本文介绍了如何求解柱状图中最大矩形面积的问题,提供了两种方法:一种是简单扫描法,另一种是利用单调栈。通过详细解释单调栈的运用,展示了如何在栈中维护柱状图的高度和宽度信息,从而计算出最大矩形面积。最终给出C++代码实现,并提到可能存在更优的解决方案。
摘要由CSDN通过智能技术生成

柱状图求最大矩形面积

题目描述:

给一组非负的整数来表示一个柱状图,设计一个算法获得柱状图中最大矩形的面积。比如,输入如下数据:2,1,4,5,1,3,3 ,其中每个数表示一个柱状条的高度,柱状条的宽度为默认值1,则计算得最大矩形的面积为8,如下图所示。

3b0318aa704c

方法一:思路很简单,以一个柱形为中心往两边扫描,若旁边的柱形高度大于等于该柱形高度,则继续往两边扫。最后记录往旁边扫描了多少距离。

比如图中的系列6,它的高度为3,然后往两边扫描,发现系列7高度大于等于它,而系列5小于它。那么总共扫描距离为2(包括自身),故以系列6为中心的矩形面积为3*2=6。

按上述步骤依次算出每个柱形的矩形面积,取最大值.

等于你在这个高度上画了一条线,只要中间不间断,就算是当前这个矩形面积的大小。

以上思路是之前有听过的。但据说这是单调栈的入门题目,下面是我觉得可能比较复杂的单调栈的一种解法,但很好理解。

方法二:建立一个单调递增栈,所有元素各进栈和出栈一次即可。每个元素出栈的时候更新最大的矩形面积。

设栈内的元素为一个二元组(x, y),x表示矩形的高度,y表示矩形的宽度。

若原始矩形高度分别为2,1,4,5,1,3,3

高度为2的元素进栈,当前栈为(2,1)

高度为1的元素准备进栈,但必须从栈顶开始删除高度大于或等于1的矩形,因为2已经不可能延续到当前矩形。删除(2,1)这个元素之后,更新最大矩形面积为2*1=2,然后把它的宽度1累加到当前高度为1的准备进栈的矩形,然后进栈,当前栈为(1,2)

高度为4的元素进栈,当前栈为(1,2) (4,1)

高度为5的元素进栈,当前栈为(1,2) (4,1) (5,1)

高度为1的元素准备进栈,删除(5,1)这个元素,更新最大矩形面积为5*1=5,把1累加到下一个元素,得到(4,2),删除(4,2),更新最大矩形面积为4*2=8,把2累加到下一个元素,得到(1,4),1*4=4<8,不必更新,删除(1,4),把4累加到当前准备进栈的元素然后进栈,当前栈为(1,5)

高度为3的元素进栈,当前栈为(1,5) (3,1)

高度为3的元素准备进栈,删除(3,1),不必更新,把1累加到当前准备进栈的元素然后进栈,当前栈为(1,5) (3,2)

把余下的元素逐个出栈,(3,2)出栈,不必更新,把2累加到下一个元素,当前栈为(1,7),(1,7)出栈,不必更新。栈空,结束。

最后的答案就是8。

代码如下:

#include

#include

using namespace std;

const int N = 100005;

struct Elem

{

int height;

int count;

};

Elem stack[N];

int top;

int main()

{

int height, n;

long long ans, tot, tmp;

while (scanf("%d", &n) != EOF && n)

{

top = 0;

ans = 0;

for (int i = 0; i < n; ++i)

{

scanf("%d", &height);

tmp = 0;

while (top > 0 && stack[top - 1].height >= height)

{

tot = stack[top - 1].height * (stack[top - 1].count + tmp);

if (tot > ans) ans = tot;

tmp += stack[top - 1].count;

--top;

}

stack[top].height = height;

stack[top].count = 1 + tmp;

++top;

}

tmp = 0;

while (top > 0)

{

tot = stack[top - 1].height * (stack[top - 1].count + tmp);

if (tot > ans) ans = tot;

tmp += stack[top - 1].count;

--top;

}

printf("%lld\n", ans);

}

return 0;

}

---------------------

方法二转自原文:https://blog.csdn.net/alongela/article/details/8230739

好像还有更好地办法,我之后再学习探究一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值