elastic java api 聚合_elasticsearch 常见查询及聚合的JAVA API

本文介绍了如何使用Elasticsearch的Java API进行常见的查询和聚合操作,包括根据ID查询、分页查询、多条件组合查询、范围查询、包含查询、ID包含查询、通配符查询以及统计指标如count、max、sum、avg等。通过实例代码展示了如何实现这些功能,适合开发者参考学习。
摘要由CSDN通过智能技术生成

最近在研究ES 有点心得记录下备忘

ES 常见查询

根据ID 进行单个查询

GetResponse response = client.prepareGet("accounts", "person", "1")

.setOperationThreaded(false)

.get();

相对于sql 的 select * from accounts.person  where id=1 ;

分页查询所有记录

QueryBuilder qb=new MatchAllQueryBuilder();

SearchResponse response= client.prepareSearch("accounts").setTypes("person").setQuery(qb).setFrom(0)

.setSize(100).get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

response.getHits()是所有命中记录 相较于sql select * from accounts.person limit 100;

根据多条件组合与查询

QueryBuilder qb=QueryBuilders.boolQuery().must(QueryBuilders.termQuery("title","JAVA开发工程师")).must(QueryBuilders.termQuery("age",30)) ;

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(qb).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

must 就像sql里的and   相较于sql  select * from accounts.person where title='JAVA开发工程师' and age=30

多条件或查询

QueryBuilder qb=QueryBuilders.termQuery("user","kimchy14");

QueryBuilder qb1=QueryBuilders.termQuery("user","kimchy15");

SortBuilder sortBuilder=SortBuilders.fieldSort("age");

sortBuilder.order(SortOrder.DESC);

QueryBuilder s=QueryBuilders.boolQuery().should(qb).should(qb1);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).addSort(sortBuilder).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

should 就像sql里的or  SortBuilder 的作用不言而喻就是用来排序 以上代码相较于sql  select * from   accounts.person where user='kimchy14' or  user='kimchy15'   ;

范围查询

// RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

// RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").gt(30 );

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").gte(30 );

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

范围查询rangeQuery.from(30,true)方法是大于30  后面的参数是是否包含 为true的话就是大于等于30 to就相当于小于 如果也有包含参数为true的话就是小于等于  gt 是大于 gte是大于等于   lt是小于 lte是小于等于  第一句的builder就相当于 select * from accounts.person where age >=30 and age<=30;

包含查询

List strs=new ArrayList<>();

strs.add("kimchy14");

strs.add("kimchy15");

strs.add("kimchy16");

QueryBuilder qb=QueryBuilders.termsQuery("user",strs);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(qb).setFetchSource("age",null).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

包含查询使用termsQuery 可以传列表 也可以传多个参数 或者数组 setFetchSource有两个参数 第一个参数是包含哪些参数 第二个参数是排除哪些参数   以上这段代码就相当于sql  select age from accounts.person where user in ('kimchy14','kimchy15','kimchy16');

专门按id进行的包含查询

QueryBuilder qb=QueryBuilders.idsQuery(0+"");

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(qb).setFetchSource("age",null).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

按通配符查询

QueryBuilder qb = QueryBuilders.wildcardQuery("user", "k*hy17*");

//Fuzziness fuzziness=Fuzziness.fromEdits(2);

// QueryBuilder qb = QueryBuilders.fuzzyQuery("user","mchy2").fuzziness(fuzziness);

//QueryBuilder qb = QueryBuilders.prefixQuery("user", "kimchy2");

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(qb).setFetchSource("user",null).setFrom(0)

.setSize(100);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

通配符查询像我们sql里的like 但是还不一样 like的百分号可以加到前后    elasticsearch技术解析与实战中有一句话 是这么说的 为了避免极端缓慢的通配符查询 通配符索引词不应该以一个通配符开头 通配符查询应该避免以通配符开头  谢谢androidtoutou的指正

常见统计  统计分为指标 和 桶 桶就是我们统计的样本  指标就是我们平时所查的count  sum  与sql不一样的是 我们还可以将统计的样本拿到 就是response.getHits

统计count

AggregationBuilder termsBuilder = AggregationBuilders.count("ageCount").field("age");

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

ValueCount valueCount= response.getAggregations().get("ageCount");

long value=valueCount.getValue();

这段代码就相当于 sql select count(age) ageCount form accounts.person  where age >=30 and age<=30

查询最大值

AggregationBuilder termsBuilder = AggregationBuilders.max("max").field("age");

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

Max valueCount= response.getAggregations().get("max");

double value=valueCount.getValue();

统计总和

AggregationBuilder termsBuilder = AggregationBuilders.sum("sum").field("age");

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

Sum valueCount= response.getAggregations().get("sum");

double value=valueCount.getValue();

平均数

AggregationBuilder termsBuilder = AggregationBuilders.avg("avg").field("age");

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

Avg valueCount= response.getAggregations().get("avg");

double value=valueCount.getValue();

统计样本基本指标

AggregationBuilder termsBuilder = AggregationBuilders.stats("stats").field("age");

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(30,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

SearchHits searchHits = response.getHits();

for(SearchHit hit:searchHits.getHits()){

logger.log(Level.INFO , hit.getSourceAsString());

}

Stats valueCount= response.getAggregations().get("stats");

logger.log(Level.INFO,"max"+valueCount.getMaxAsString());

logger.log(Level.INFO,"avg"+valueCount.getAvgAsString());

logger.log(Level.INFO,"sum"+valueCount.getSumAsString());

logger.log(Level.INFO,"min"+valueCount.getMinAsString());

logger.log(Level.INFO,"count"+valueCount.getCount());

分组统计 相当于group by 后拿各组指标进行统计

分组求各组数据

AggregationBuilder termsBuilder = AggregationBuilders.terms("by_age").field("age");

AggregationBuilder sumBuilder=AggregationBuilders.sum("ageSum").field("age");

AggregationBuilder avgBuilder=AggregationBuilders.avg("ageAvg").field("age");

AggregationBuilder countBuilder=AggregationBuilders.count("ageCount").field("age");

termsBuilder.subAggregation(sumBuilder).subAggregation(avgBuilder).subAggregation(countBuilder);

//TermsAggregationBuilder all = AggregationBuilders.terms("age").field("age");

//all.subAggregation(termsBuilder);

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(36,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(s).setFetchSource(null,"gender").setFrom(0).setSize(100).addAggregation(termsBuilder);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

Aggregations terms= response.getAggregations();

for (Aggregation a:terms){

LongTerms teamSum= (LongTerms)a;

for(LongTerms.Bucket bucket:teamSum.getBuckets()){

logger.info(bucket.getKeyAsString()+" "+bucket.getDocCount()+" "+((Sum)bucket.getAggregations().asMap().get("ageSum")).getValue()+" "+((Avg)bucket.getAggregations().asMap().get("ageAvg")).getValue()+" "+((ValueCount)bucket.getAggregations().asMap().get("ageCount")).getValue());

}

}

第一行 termsBuilder 就相当于根据年龄对数据进行分组 group by   后面对sumBuilder avgBuilder countBuilder等就是在组内 求和 求平均数 求数量

多分组求各组数据

TermsAggregationBuilder all = AggregationBuilders.terms("by_gender").field("gender");

AggregationBuilder age = AggregationBuilders.terms("by_age").field("age");

AggregationBuilder sumBuilder=AggregationBuilders.sum("ageSum").field("age");

//AggregationBuilder avgBuilder=AggregationBuilders.avg("ageAvg").field("age");

// AggregationBuilder countBuilder=AggregationBuilders.count("ageCount").field("age");

all.subAggregation(age.subAggregation(sumBuilder));

RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("age").from(30,true).to(32,true);

QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder);//.must(qb5);

SearchRequestBuilder sv=client.prepareSearch("accounts").setTypes("person").setQuery(rangeQueryBuilder).addAggregation(all);

logger.log(Level.INFO,sv.toString());

SearchResponse response= sv.get();

Aggregations terms= response.getAggregations();

for (Aggregation a:terms){

StringTerms stringTerms= (StringTerms)a;

for(StringTerms.Bucket bucket:stringTerms.getBuckets()){

// logger.info(bucket.getKeyAsString());

Aggregation aggs=bucket.getAggregations().getAsMap().get("by_age");

LongTerms terms1= (LongTerms)aggs;

for (LongTerms.Bucket bu:terms1.getBuckets()){

logger.info(bucket.getKeyAsString()+" "+bu.getKeyAsString()+" "+bu.getDocCount()+" "+((Sum)bu.getAggregations().asMap().get("ageSum")).getValue());

}

}

}

每增加一个分组指标就需要多加一个termsBuilder  其他等一切跟普通分组一样 每次拿到

以上就是我总结的基本的查询 聚合 等常见功能 其他等诸如 求各组前多少数据是用topHits 这些基本够我们日常操作了 。

最后我们总结下    精确查询用term 组合查询用bool 范围用range    and查询用must    or查询用should  not查询用must not  常见的接收聚合返回结果的类型 ValueCount   AVG  SUM  MAX  MIN  按照英文意义就可以理解  分组聚合查询时候还需要根据实际情况看是返回那种terms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值