《测绘学报》
构建与学术的桥梁 拉近与权威的距离
加权混合估计中权值的确定方法
宋迎春1,2, 宋采薇1,2, 左廷英1,2
1. 中南大学有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083;2. 中南大学地球科学与信息物理学院, 湖南 长沙 410083
收稿日期:2018-07-30;修回日期:2019-08-25
基金项目:国家自然科学基金(41574006;41674009;41674012)
第一作者简介:宋迎春(1963-), 男, 博士, 教授, 研究方向为测量数据处理理论与方法。E-mail:csusyc@csu.edu.cn, csusyc@qq.com
通信作者:左廷英, E-mail: zty2003@163.com
摘要:综合了大地测量中各种异方差多源观测模型和联合平差方法,说明了混合估计方法可以用于测量数据融合,平衡附加信息和样本信息对参数估计的影响。通过求取权值使参数估计的协方差阵的迹最小的方法,给出了一个权的最优选择方法。本文扩展了已有的加权混合估计方法,使得新方法中的权不受验前单位权方差的限制,能有效应用于大地测量数据处理。
关键词:随机约束 平差模型 加权混合估计 最优线性无偏估计
A method for determining the weight in weighted mixed estimation
SONG Yingchun1,2, SONG Caiwei1,2, ZUO Tingying1,2
1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China;2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Foundation support: The National Natural Science Foundation of China (Nos. 41574006; 41674009; 41674012)
First author: SONG Yingchun (1963—), male, PhD, professor, majors in theory and method of measuring data processing. E-mail:csusyc@csu.edu.cn, csusyc@qq.com.
Corresponding author: ZUO Tingying, E-mail: zty2003@163.com.
Abstract: In this paper, multi-source observation models with various heteroscedastic and combined adjustment methods in geodesy are summarized. It shows that the mixed estimation method can be used for measurement data fusion, and can balance the influence of additional information and sample information on parameter estimation. By calculating the weights to minimize the trace of the covariance matrix of parameter estimation, an optimal selection method of weights is given. This paper extends the existing weighted mixing method so that the given method are not limited by the prior unit weight variance, and can be effectively applied to large measurement data processing.
Key words: stochastic constraint adjustment model weighted mixed estimation optimal linear unbiased estimation
随着测量理论与技术的发展,测量平差的对象已从过去的单一同类观测扩展为同类不同精度,或不同类多源观测,通过多源数据融合可以获取更全面、更有效的信息,产生比单一信息源更精确、更可靠的信息[1-3]。然而,多源观测有不同的函数模型和随机模型,如边角网平差、导线网平差、地面网与空间网联合平差、水准网与重力网联合平差、不同空间网联合平差等[4-6]。另外,多源数据融合也会出现一些关于函数模型和随机模型的先验信息,如参数间往往存在固有的几何关系,构成函数模型约束,参数也可能存在某些先验随机信息,构成随机模型约束[7]。例如,多GNSS系统间存在互操作参数,具有系统性或缓变特性,因此可以通过最初若干历元求得的互操作参数作为先验的随机约束信息,参与后续的互操作参数解算。这些不同的模型,不同的先验信息给多源数据融合带来了挑战。在大地测量中(如复测网),为了融合多源观测数据,获取最优估计值,许多学者提出了联合平差方法,此类方法大多需要知道各类观测量的准确先验方差,从而确定各类融合数据的权[8-12]。在无法准确知道各类观测量的先验方差时,可以采用方差分量估计的方法对方差进行估计后再计算权值,如Helmert方差估计和最小范数二次无偏估计(MINQUE),由于随机约束信息并不能保证能够进行方差估计,因此本文不讨论此类方法。有学者直接提出了迭代求权值方法[10-12],但是迭代重加权最小二乘法是参数的一种非线性估计,其协方差阵计算困难,无法对其进行精度评估。在数学上,许多学者把多源观测数据看成是在新观测得到的样本信息上加上一些先验的随机约束信息[13-16],文献[17—19]研究了这类问题,提出了混合估计。由于附加信息和样本信息在估计过程中作用是不均等的,文献[20]在混合估计的基础上,提出了加权混合估计。这些算法大多注重于算法的效率和估计的优良性,不能直接用于大地测量数据处理。本文综合了大地测量中各种异方差多源观测模型和联合平差方法,利用带有随机约束的线性模型理论,建立了新的加权平差准则,平衡先验约束和观测信息对参数估计的影响,分析了加权混合估计的统计性质,扩展了已有的加权混合方法,提出了权的最优化选择方法,使得加权混合估计方法能有效应用于大测量数据处理。
1 带有随机约束的平差模型与加权混合估计
对于平差模型
(1)
式中,L为n维观测向量;A是n×m的设计矩阵;秩(A)=m;X=[x1x2…xm]T为m维未知向量;Δ为n维随机误差向量;ΣΔ为协方差矩阵;Δ~N(0,ΣΔ);ΣΔ=σΔ2PΔ-1;PΔ=σΔ2ΣΔ-1;σΔ2为单位权方差。
式(1)中的X是没有任何约束的,但在一些实际问题中,往往要求X满足某种约束条件,如X是非负的,或X满足某个线性等式约束。文献[18]提出了混合回归模型,将线性约束HX=c随机化得到随机化约束
(2)
式中,h是p维随机向量;H是p×m矩阵;e是服从正态分布的p维随机误差向量,它的期望为0,协差阵为Σe=σe2Pe-1,即e~N(0,Σe)。Δ与e是独立的。这样就形成了带有随机约束的平差模型
(3)
其参数估计为
(4)
由式(4)可以看出,随机约束下混合估计形式上只需要在无约束最小二乘估计=(ATΣΔ-1A)-1ATΣΔ-1L中添加两项H<