zookeeper leader和learner的数据同步

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_36145588/article/details/75043611

数据同步

在leader和follower启动期交互过程中,我们分析到整个集群完成leader选举后,learner会向leader服务器进行注册,当过半的learner服务器向leader完成注册后,就进入数据同步环节。简单讲,数据同步过程就是leader服务器将那些没有在learner服务器上提交过的事务请求同步给learner服务器。

获取Learner状态

在注册learner的最后阶段,learner服务器会发送给leader服务器一个ACKEPOCH数据包,leader会从这个数据包中解析出该learner的currentEpoch和lastZxid。
LearnerHandler.java

                QuorumPacket ackEpochPacket = new QuorumPacket();
                ia.readRecord(ackEpochPacket, "packet");
                if (ackEpochPacket.getType() != Leader.ACKEPOCH) {
                    LOG.error(ackEpochPacket.toString()
                            + " is not ACKEPOCH");
                    return;
                }
                ByteBuffer bbepoch = ByteBuffer.wrap(ackEpochPacket.getData());
                ss = new StateSummary(bbepoch.getInt(), ackEpochPacket.getZxid());
                leader.waitForEpochAck(this.getSid(), ss);
            }
            //从这个数据包中解析出该learner的currentEpoch和lastZxid
            peerLastZxid = ss.getLastZxid();

数据同步初始化

首先,leader会从zookeeper的内存数据库中提取出事务请求对应的提议缓存队列:proposals,同时完成对以下三个ZXID值的初始化。

  • peerLastZxid:该learner服务器最后处理的ZXID。
  • minCommittedLog:leader服务器提议缓存队列committedLog中的最小ZXID。
  • maxCommittedLog:leader服务器提议缓存队列committedLog中的最大ZXID。

    LearnerHandler.java 接上面代码

            peerLastZxid = ss.getLastZxid();

            //默认发送一个SNAP包,要求follower同步数据
            int packetToSend = Leader.SNAP;
            long zxidToSend = 0;
            long leaderLastZxid = 0;
            /** the packets that the follower needs to get updates from **/
            long updates = peerLastZxid;
            ReentrantReadWriteLock lock = leader.zk.getZKDatabase().getLogLock();
            ReadLock rl = lock.readLock();
            try {
                rl.lock();        
                final long maxCommittedLog = leader.zk.getZKDatabase().getmaxCommittedLog();
                final long minCommittedLog = leader.zk.getZKDatabase().getminCommittedLog();
                LOG.info("Synchronizing with Follower sid: " + sid
                        +" maxCommittedLog=0x"+Long.toHexString(maxCommittedLog)
                        +" minCommittedLog=0x"+Long.toHexString(minCommittedLog)
                        +" peerLastZxid=0x"+Long.toHexString(peerLastZxid));

                LinkedList<Proposal> proposals = leader.zk.getZKDatabase().getCommittedLog();

数据同步通常分为四类,分别是直接差异化同步(DIFF同步),先回滚在差异化同步(TRUNC+DIFF同步),仅回滚同步(TRUNC同步)和全量同步(SNAP同步)。会根据leader和learner服务器间的数据差异情况来决定最终的数据同步方式。

直接差异化同步

场景:peerLastZxid介于minCommittedLog和maxCommittedLog间。
leader首先会向这个learner发送一个DIFF指令,用于通知“learner即将把一些proposal同步给自己”。实际同步过程中,针对每个proposal,leader都会通过发送两个数据包来完成,分别是PROPOSAL内容数据包和COMMIT指令数据包——这和zookeeper运行时leader和follower间的事务请求的提交过程是一致的。
举例,某时刻leader的提议缓存队列对应的ZXID依次是:
0x500000001,0x500000002,0x500000003,0x500000004,0x500000005
而learner最后处理的ZXID为0x500000003,于是leader依次将0x500000004和0x500000005两个提议同步给learner。

先回滚在差异化同步

场景:A,B,C三台机器,某一时刻B是leader,此时leader_epoch为5,同时当前已被集群大部分机器都提交的ZXID包括:0x500000001,0x500000002。此时leader正处理ZXID:0x500000003,并且已经将事务写入到了leader本地的事务日志中去——就在leader恰好要将该proposal发给其他follower进行投票时,leader挂了,proposal没被同步出去。此时集群进行新一轮leader选举,假设此次选的leader为A,leader_epoch变更为6,之后A和C又提交了0x600000001,0x600000002两个事务。此时B再次启动并开始数据同步。
简单讲,上面场景就是leader在已经将事务记录到本地事务日志中,但没有成功发起proposal流程时就挂了。
当leader发现某个learner包含一条自己没的事务记录,就让该learner进行事务回滚——回滚到leader上存在的,最接近peerLastZxid的ZXID,上面例子中leader会让learner回滚到ZXID为0x500000002的事务记录。

仅回滚同步

场景:peerLastZxid大于maxCommittedLog
这种场景就是上述先回滚再差异化同步的简化模式,leader会要求learner回滚到ZXID值为maxCommitedLog对应的事务操作。

全量同步(SNAP同步)

场景1:peerLastZxid小于minCommittedLog
场景2:leader上没有提议缓存队列,peerLastZxid不等于lastProcessedZxid(leader服务器数据恢复后得到的最大ZXID)

这两种场景下,只能进行全量同步。leader首先向learner发送一个SNAP指令,通知learner进行全量同步,随后leader会从内存数据库中获取到全量的数据节点和会话超时时间记录器,将它们序列化后传输给learner,learner接收到后对其反序列化后再入内存数据库中。

同步代码

//看看是否还有需要投的票  
              LinkedList<Proposal> proposals = leader.zk.getZKDatabase().getCommittedLog();  
//如果有,则处理这些投票  
              if (proposals.size() != 0) {  
    //如果follower还没处理这个分布式事务,有可能down掉了又恢复,则继续处理这个事务  
                 if ((maxCommittedLog >= peerLastZxid)  
                          && (minCommittedLog <= peerLastZxid)) {  
                     .......  
                      // If we are here, we can use committedLog to sync with  
                      // follower. Then we only need to decide whether to  
                      // send trunc or not  
                      packetToSend = Leader.DIFF;  
                      zxidToSend = maxCommittedLog;  

                      for (Proposal propose: proposals) {  
                          // skip the proposals the peer already has  
        //这个已经被处理过了,无视  
                          if (propose.packet.getZxid() <= peerLastZxid) {  
                              prevProposalZxid = propose.packet.getZxid();  
                              continue;  
                          } else {  
                              // If we are sending the first packet, figure out whether to trunc  
                              // in case the follower has some proposals that the leader doesn't  
        //发第一个事务之前先确认folloer是否比leader超前  
                              if (firstPacket) {  
                                  firstPacket = false;  
                                  // Does the peer have some proposals that the leader hasn't seen yet  
            //follower处理事务比leader多,则发送TRUNC包,让follower回滚到和leader一致  
                                  if (prevProposalZxid < peerLastZxid) {  
                                      // send a trunc message before sending the diff  
                                      packetToSend = Leader.TRUNC;                                          
                                      zxidToSend = prevProposalZxid;  
                                      updates = zxidToSend;  
                                  }  
                              }  
        //将事务发送到队列  
                              queuePacket(propose.packet);  
        //立马接一个COMMIT包  
                              QuorumPacket qcommit = new QuorumPacket(Leader.COMMIT, propose.packet.getZxid(),  
                                      null, null);  
                              queuePacket(qcommit);  
                          }  
                      }  
                  }   
    //如果follower超前了,则发送TRUNC包,让其和leader同步  
    else if (peerLastZxid > maxCommittedLog) {  
                      LOG.debug("Sending TRUNC to follower zxidToSend=0x{} updates=0x{}",  
                              Long.toHexString(maxCommittedLog),  
                              Long.toHexString(updates));  

                      packetToSend = Leader.TRUNC;  
                      zxidToSend = maxCommittedLog;  
                      updates = zxidToSend;  
                  } else {  
                      LOG.warn("Unhandled proposal scenario");  
                  }  
              }   
//如果follower和leader同步,则发送DIFF包,而不需要follower拉数据  
else if (peerLastZxid == leader.zk.getZKDatabase().getDataTreeLastProcessedZxid()) {  
                  .....  
                  packetToSend = Leader.DIFF;  
                  zxidToSend = peerLastZxid;  
            .......  
//NEWLEADER包添加到发送队列  
           QuorumPacket newLeaderQP = new QuorumPacket(Leader.NEWLEADER,  
                  ZxidUtils.makeZxid(newEpoch, 0), null, null);  
           if (getVersion() < 0x10000) {  
              oa.writeRecord(newLeaderQP, "packet");  
          } else {  
              queuedPackets.add(newLeaderQP);  
          }  
          bufferedOutput.flush();  
          //Need to set the zxidToSend to the latest zxid  
          if (packetToSend == Leader.SNAP) {  
              zxidToSend = leader.zk.getZKDatabase().getDataTreeLastProcessedZxid();  
          }  
   //发送一个DIFF或SNAP包  
          oa.writeRecord(new QuorumPacket(packetToSend, zxidToSend, null, null), "packet");  
          bufferedOutput.flush();  
   ......  
   // Start sending packets  
   //启动一个异步发送线程  
          new Thread() {  
              public void run() {  
                  Thread.currentThread().setName(  
                          "Sender-" + sock.getRemoteSocketAddress());  
                  try {  
                      sendPackets();  
                  } catch (InterruptedException e) {  
                      LOG.warn("Unexpected interruption",e);  
                  }  
              }  
          }.start();  

          /* 
           * Have to wait for the first ACK, wait until  
           * the leader is ready, and only then we can 
           * start processing messages. 
           */  
    //等待follower确认  
          qp = new QuorumPacket();  
          ia.readRecord(qp, "packet");

收尾阶段

leader在完成完差异数据后,就会将该learner加入到forwardingFollowers或observingLearners队列中,这俩队列在运行期间的事务请求处理过程中会使用到。随后leader发送一个NEWLEADER指令,用于通知learner已经将提议缓存队列中的proposal都同步给自己了。
当learner收到leader的NEWLEADER指令后会反馈给leader一个ack消息,表明自己完成了对提议缓存队列中proposal的同步。

leader收到来自learner的ack后,进入“过半策略”等待阶段,知道集群中有过半的learner机器响应了leader这个ack消息。
一旦满足“过半策略”后,leader会向所有已完成数据同步的learner发送一个UPTODATE指令,用来通知learner已完成数据同步,同时集群已有过半机器完成同步,集群已具有对外服务的能力了。

learner在收到leader的UPTODATE指令后,会终止数据同步流程,然后向leader再反馈一个ACK消息。

展开阅读全文

没有更多推荐了,返回首页