matlab init,Initialize neural network

init

Initialize neural network

Syntax

net = init(net)

To Get Help

Type help network/init.

Description

net = init(net) returns neural network net with

weight and bias values updated according to the network initialization function, indicated by

net.initFcn, and the parameter values, indicated by

net.initParam.

Examples

Here a perceptron is created, and then configured so that its input, output, weight, and

bias dimensions match the input and target data.

x = [0 1 0 1; 0 0 1 1];

t = [0 0 0 1];

net = perceptron;

net = configure(net,x,t);

net.iw{1,1}

net.b{1}

Training the perceptron alters its weight and bias values.

net = train(net,x,t);

net.iw{1,1}

net.b{1}

init reinitializes those weight and bias values.

net = init(net);

net.iw{1,1}

net.b{1}

The weights and biases are zeros again, which are the initial values used by perceptron

networks.

Algorithms

init calls net.initFcn to initialize the weight and

bias values according to the parameter values net.initParam.

Typically, net.initFcn is set to 'initlay', which

initializes each layer’s weights and biases according to its

net.layers{i}.initFcn.

Backpropagation networks have net.layers{i}.initFcn set to

'initnw', which calculates the weight and bias values for layer

i using the Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to

'initwb', which initializes each weight and bias with its own initialization

function. The most common weight and bias initialization function is rands,

which generates random values between –1 and 1.

Introduced before R2006a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值