问题描述
这段代码是一个演示使用pytorch训练线性模型的demo。代码的目标:使用pytorch,训练一个线性模型(y = wx + b)。
程序运行的结果是能够正常的训练,但是程序运行到最后一行,停不下来,按Ctrl + C也不起作用。只有通过关闭cmd.bat窗口才能关闭它。
运行环境说明:
windows 7 64bit
python 3.6.5
torch: 1.2.0
解决尝试我试着对这个问题在网上进行查找,这个问题,大家提的很少。没有找到相关的链接。
我逐句的注释过程序,发现注释掉loss.backward(),程序运行到最末,就能正常的结束。但是这样,模型就无法正常的训练了。是不是下面的demo写法上有不完善的地方?或者我选用的torch 版本有问题?
代码内容import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1); # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size()); # noisy y data (tensor), shape=(100, 1)
print(x);
print(y);
x, y = Variable(x), Variable(y);
class Net(torch.nn.Module):
def __init__(self, n_features, n_hidden, n_output):
super(Net, self).__init__();
self.hidden = torch.nn.Linear(n_features, n_hidden);
self.predict = torch.nn.Linear(n_hidden, n_output);
def forward(self, x):
x = F.relu(self.hidden(x));
x = self.predict(x);
return x;
net = Net(1, 10, 1);
print(net);
optimizer = torch.optim.SGD(net.parameters(), lr=0.5);
loss_func = torch.nn.MSELoss();
for t in range(100):
prediction = net(x);
loss = loss_func(prediction, y);
optimizer.zero_grad();
loss.backward();
optimizer.step();
if t % 5 == 0:
print('loss.data.numpy = ', loss.data.numpy());
print('运行结束...')