matlab中三阶导数,三阶样条插值(一阶导数边界条件) matlab程序

本文详细介绍了如何使用三次样条插值算法对给定的数据进行拟合,并提供了MATLAB代码示例。通过计算一阶和二阶差商,确定插值函数的斜率和拐点,构建并求解插值矩阵,得到在指定区间内的函数表达式。适合理解插值理论和技术开发者参考。
摘要由CSDN通过智能技术生成

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

function

S=Threch1(X,Y,dy0,dyn,xi)

% X

为已知数据的横坐标

%Y

为已知数据的纵坐标

%xi

插值点处的横坐标

%S

求得的三次样条插值函数的值

%dy0

左端点处的一阶导数

% dyn

右端点处的一阶导数

n=length(X)-1;

d=zeros(n+1,1);

h=zeros(1,n-1);

f1=zeros(1,n-1);

f2=zeros(1,n-2);

for

i=1:n

%

求函数的一阶差商

h(i)=X(i+1)-X(i);

f1(i)=(Y(i+1)-Y(i))/h(i);

end

for

i=2:n

%

求函数的二阶差商

f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));

d(i)=6*f2(i);

end

d(1)=6*(f1(1)-dy0)/h(1);

d(n+1)=6*(dyn-f1(n-1))/h(n-1);

赋初值

A=zeros(n+1,n+1);

B=zeros(1,n-1);

C=zeros(1,n-1);

for

i=1:n-1

B(i)=h(i)/(h(i)+h(i+1));

C(i)=1-B(i);

end

A(1,2)=1;

A(n+1,n)=1;

for

i=1:n+1

A(i,i)=2;

end

for

i=2:n

A(i,i-1)=B(i-1);

A(i,i+1)=C(i-1);

end

M=A\d;

syms

x

;

for

i=1:n

Sx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))

...

+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);

digits(4);

Sx(i)=vpa(Sx(i));%

三样条插值函数表达式

end

for

i=1:n

disp(

'S(x)='

);

fprintf(

'%s (%d,%d)\n'

,char(Sx(i)),X(i),X(i+1));

end

for

i=1:n

if

xi>=X(i)&&xi<=X(i+1)

S=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(xi-X(i))+M(i)/2*(xi-X(i))^2+(M

(i+1)-M(i))/(6*h(i))*(xi-X(i))^3;

end

end

disp(

'xi S'

);

fprintf(

'%d,%d\n'

,xi,S);

return

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值