这是一篇工具类的文章,工欲善其事必先利其器,要分析调试hive源码,必须搭建一套hive的运行环境。还记得第一次搭建hive源码调试环境,用了一个月的时间,才完全跑通整个调试过程。中间遇到各种各样莫名奇妙的问题,也有好多次想放弃,幸好坚持了下来。
linux版本:centos 6.5
Java版本:jdk1.8
Hive版本:hive-2.1.1
Hadoop版本:hadoop-2.7.3
1、Jdk环境安装
上传jdk安装包
解压安装包
tar -zxvf jdk-8u131-linux-x64.tar.gz
建立软链节
ln -s jdk1.8.0_131/ java
配置环境变量
vim /etc/profile
source /etc/profile 使生效验证
java–version
2、HADOOP安装部署
我下载的是 hadoop-2.7.3.tar.gz,官网在2.5之后默认提供的就是64位的,这里直接下载下来用即可
上传HADOOP安装包
解压安装包
tar -zxvf hadoop-2.7.3.tar.gz
建立软链节
ln -s hadoop-2.7.3 hadoop
配置环境变量
vim /etc/profile
source /etc/profile 使生效修改配置文件(搭建调试环境,伪分布就够用啦)
cd $HADOOP_HOME/etc/hadoop/
vim core-site.xml
vim hdfs-site.xml
vim hadoop-env.sh
cp mapred-site.xml.template mapred-site.xml
vim mapred-site.xml
vim yarn-site.xml
ssh免密码登录
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub>> ~/.ssh/authorized_keys
chmod 0600~/.ssh/authorized_keys
格式化namenode
hdfs namenode -format
启动
start-dfs.sh start-yarn.sh
验证
数据测试(wordcount)
hdfs dfs -mkdir /wordcount
hdfs dfs -put ~/testdata/wordcount /wordcount
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /wordcount/wordcount /wordcount/output
hadoop fs -cat /wordcount/output/part-r-00000
停止
stop-dfs.sh
stop-yarn.sh
3、HIVE安装部署
apache-hive-2.1.1-bin.tar.gz 安装包
apache-hive-2.1.1-src.tar.gz 源码包 (后面编译源码、调试源码会用到)
上传HIVE安装包
解压安装包
tar -zxvf apache-hive-2.1.1-bin.tar.gz
建立软链节
ln -s apache-hive-2.1.1-bin hive
配置环境变量
vim /etc/profile
source /etc/profile 使生效mysql安装(用mysql做为hive的元数据库)
MySQL-client-5.6.42-1.el6.x86_64.rpm
MySQL-server-5.6.42-1.el6.x86_64.rpm
rpm -ivh MySQL-server-5.6.42-1.el6.x86_64.rpm 安装mysql服务端
rpm -ivh MySQL-client-5.6.42-1.el6.x86_64.rpm 安装mysql客户端
service mysql start启动mysql 服务端
cat /root/.mysql_secret 查看mysql初始化密码
用初始化密码登录并修改密码
mysql -u root -p_tcke0WJxDyw02TS
set password=PASSWORD('123456');
测试:
mysql -u root -p123456
hive配制
cd /opt/soft/hive/conf
vim hive-site.xml
下载mysql jdbc驱动包
mysql-connector-java-5.1.47.jar
把mysql的jdbc驱动放置到hive的lib目录下初始化hive元数据库
schematool -dbType mysql -initSchema安装完成 测试:
(完)
下一篇准备写Hive源码编译