证明任意 n n n个连续正整数的乘积一定是 n ! n! n!的倍数。
目前笔者已知的只能用排列组合法来证明,欢迎大佬补充。
排列组合法证明任意 n n n个连续正整数的乘积一定是 n ! n! n!的倍数:
证明:设这
n
n
n个连续自然数分别为
k
,
k
+
1
,
k
+
2
,
k
+
3
,
.
.
.
,
k
+
n
−
1.
(
k
∈
N
∗
)
k,k+1,k+2,k+3,...,k+n-1.\left(k\in N^*\right)
k,k+1,k+2,k+3,...,k+n−1.(k∈N∗)
P
=
∏
i
=
0
n
−
1
(
k
+
i
)
=
A
k
+
n
−
1
n
P=\prod\limits^{n-1}_{i=0}\left(k+i\right)=A_{k+n-1}^n
P=i=0∏n−1(k+i)=Ak+n−1n
根据排列数和组合数之间的关系式,
A
m
n
=
C
m
n
∗
A
n
n
A_m^n=C^n_m*A_n^n
Amn=Cmn∗Ann
因此,
A
k
+
n
−
1
n
=
C
k
+
n
−
1
n
∗
A
n
n
=
C
k
+
n
−
1
n
∗
n
!
A^n_{k+n-1}=C^n_{k+n-1}*A^n_n=C^n_{k+n-1}*n!
Ak+n−1n=Ck+n−1n∗Ann=Ck+n−1n∗n!
所以,
P
=
A
k
+
n
−
1
n
=
C
k
+
n
−
1
n
∗
n
!
P=A_{k+n-1}^n=C^n_{k+n-1}*n!
P=Ak+n−1n=Ck+n−1n∗n!
即
k
(
k
+
1
)
(
k
+
2
)
(
k
+
3
)
.
.
.
(
k
+
n
−
1
)
=
M
∗
n
!
k(k+1)(k+2)(k+3)...(k+n-1)=M*n!
k(k+1)(k+2)(k+3)...(k+n−1)=M∗n!
其中,
M
=
C
k
+
n
−
1
n
∈
N
∗
M=C^n_{k+n-1}\in N^*
M=Ck+n−1n∈N∗
所以,这连续
n
n
n个正整数的乘积一定是
n
!
n!
n!的倍数。
笔者认为的错误证明:
证明:
n
=
1
n=1
n=1时明显成立
假设
n
=
k
n=k
n=k也成立
n
=
k
+
1
n=k+1
n=k+1时,令
S
n
S_n
Sn表示任意连续
n
n
n个正整数的乘积
S
k
+
1
S_{k+1}
Sk+1=
S
k
∗
A
k
+
1
=
m
∗
k
!
∗
A
k
+
1
S_k*A_{k+1}=m*k!*A_{k+1}
Sk∗Ak+1=m∗k!∗Ak+1
由于任意连续
(
k
+
1
)
(k+1)
(k+1)个正整数中必有一个是
(
k
+
1
)
(k+1)
(k+1)的倍数1,
(笔者不赞同之处在于这里的因果关系2)
所以
m
∗
A
k
+
1
m*A_{k+1}
m∗Ak+1一定能整除
(
k
+
1
)
(k+1)
(k+1),可令
m
∗
A
k
+
1
=
(
k
+
1
)
∗
p
m*A_{k+1}=(k+1)*p
m∗Ak+1=(k+1)∗p
S
k
+
1
=
p
∗
(
k
+
1
)
∗
k
!
=
p
∗
(
k
+
1
)
!
S_{k+1}=p*(k+1)*k!=p*(k+1)!
Sk+1=p∗(k+1)∗k!=p∗(k+1)!
所以
n
=
k
+
1
n=k+1
n=k+1时也成立
由归纳法知道,该结论成立。
注:“任意连续
(
k
+
1
)
(k+1)
(k+1)个正整数中必有一个是
(
k
+
1
)
(k+1)
(k+1)的倍数1”
这句话笔者认为是赞同的。
对于所有的自然数,可以划分为2类,分别是被2除余0的和被2除余1的,即通常说的偶数和奇数,而相邻的两个数,必为1奇1偶,分别属于这两类。换言之,相邻的两个数必有1个被2除余0,也就是能被2整除,是2的倍数。因此这2个数的积一定能被2整除。 类似的,对于所有的自然数,可以划分为k类(其中k是正整数),分别是被k除余0的、余1的…余(k-1)的,而相邻的k个数,一定分别属于这k类,所以,相邻的k个自然数中必有1个数是k的倍数,因而相邻k个自然数的乘积一定能被k整除。 ↩︎ ↩︎
因为 A k + 1 A_{k+1} Ak+1不一定是 ( k + 1 ) (k+1) (k+1)的倍数,所以除去 ( k + 1 ) (k+1) (k+1)的倍数后就不保证这些正整数的连续性了, S k = m ∗ k ! S_k=m*k! Sk=m∗k! 也就不成立了。 ↩︎