证明任意n个连续正整数的乘积一定是n!的倍数

证明任意 n n n个连续正整数的乘积一定是 n ! n! n!的倍数。

目前笔者已知的只能用排列组合法来证明,欢迎大佬补充。

排列组合法证明任意 n n n个连续正整数的乘积一定是 n ! n! n!的倍数:

证明:设这 n n n个连续自然数分别为
k , k + 1 , k + 2 , k + 3 , . . . , k + n − 1. ( k ∈ N ∗ ) k,k+1,k+2,k+3,...,k+n-1.\left(k\in N^*\right) k,k+1,k+2,k+3,...,k+n1.(kN)
P = ∏ i = 0 n − 1 ( k + i ) = A k + n − 1 n P=\prod\limits^{n-1}_{i=0}\left(k+i\right)=A_{k+n-1}^n P=i=0n1(k+i)=Ak+n1n
根据排列数和组合数之间的关系式, A m n = C m n ∗ A n n A_m^n=C^n_m*A_n^n Amn=CmnAnn
因此, A k + n − 1 n = C k + n − 1 n ∗ A n n = C k + n − 1 n ∗ n ! A^n_{k+n-1}=C^n_{k+n-1}*A^n_n=C^n_{k+n-1}*n! Ak+n1n=Ck+n1nAnn=Ck+n1nn!
所以, P = A k + n − 1 n = C k + n − 1 n ∗ n ! P=A_{k+n-1}^n=C^n_{k+n-1}*n! P=Ak+n1n=Ck+n1nn!
k ( k + 1 ) ( k + 2 ) ( k + 3 ) . . . ( k + n − 1 ) = M ∗ n ! k(k+1)(k+2)(k+3)...(k+n-1)=M*n! k(k+1)(k+2)(k+3)...(k+n1)=Mn!
其中, M = C k + n − 1 n ∈ N ∗ M=C^n_{k+n-1}\in N^* M=Ck+n1nN
所以,这连续 n n n个正整数的乘积一定是 n ! n! n!的倍数。

笔者认为的错误证明:

证明: n = 1 n=1 n=1时明显成立
假设 n = k n=k n=k也成立
n = k + 1 n=k+1 n=k+1时,令 S n S_n Sn表示任意连续 n n n个正整数的乘积
S k + 1 S_{k+1} Sk+1= S k ∗ A k + 1 = m ∗ k ! ∗ A k + 1 S_k*A_{k+1}=m*k!*A_{k+1} SkAk+1=mk!Ak+1
由于任意连续 ( k + 1 ) (k+1) (k+1)个正整数中必有一个是 ( k + 1 ) (k+1) (k+1)的倍数1
(笔者不赞同之处在于这里的因果关系2
所以 m ∗ A k + 1 m*A_{k+1} mAk+1一定能整除 ( k + 1 ) (k+1) (k+1),可令 m ∗ A k + 1 = ( k + 1 ) ∗ p m*A_{k+1}=(k+1)*p mAk+1=(k+1)p
S k + 1 = p ∗ ( k + 1 ) ∗ k ! = p ∗ ( k + 1 ) ! S_{k+1}=p*(k+1)*k!=p*(k+1)! Sk+1=p(k+1)k!=p(k+1)!
所以 n = k + 1 n=k+1 n=k+1时也成立
由归纳法知道,该结论成立。

注:“任意连续 ( k + 1 ) (k+1) (k+1)个正整数中必有一个是 ( k + 1 ) (k+1) (k+1)的倍数1
这句话笔者认为是赞同的。


  1. 对于所有的自然数,可以划分为2类,分别是被2除余0的和被2除余1的,即通常说的偶数和奇数,而相邻的两个数,必为1奇1偶,分别属于这两类。换言之,相邻的两个数必有1个被2除余0,也就是能被2整除,是2的倍数。因此这2个数的积一定能被2整除。 类似的,对于所有的自然数,可以划分为k类(其中k是正整数),分别是被k除余0的、余1的…余(k-1)的,而相邻的k个数,一定分别属于这k类,所以,相邻的k个自然数中必有1个数是k的倍数,因而相邻k个自然数的乘积一定能被k整除。 ↩︎ ↩︎

  2. 因为 A k + 1 A_{k+1} Ak+1不一定是 ( k + 1 ) (k+1) (k+1)的倍数,所以除去 ( k + 1 ) (k+1) (k+1)的倍数后就不保证这些正整数的连续性了, S k = m ∗ k ! S_k=m*k! Sk=mk! 也就不成立了。 ↩︎

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值