java 深度优先遍历代码_深度优先和广度优先遍历及其 Java 实现

本文介绍了图的深度优先遍历和广度优先遍历的概念,并提供了Java实现这两种遍历方式的代码。深度优先遍历优先沿着路径深入,而广度优先遍历则按照层次进行搜索。文章还展示了邻接矩阵图模型类`AMWGraph`的源码,以及对应的测试用例。
摘要由CSDN通过智能技术生成

图的遍历,所谓遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

深度优先遍历

广度优先遍历

深度优先

深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

具体算法表述如下:

访问初始结点v,并标记结点v为已访问。

查找结点v的第一个邻接结点w。

若w存在,则继续执行4,否则算法结束。

若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7

e1d55cccea34bce7592a4d0c98ca4b02.png

广度优先

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

具体算法表述如下:

访问初始结点v并标记结点v为已访问。

结点v入队列

当队列非空时,继续执行,否则算法结束。

出队列,取得队头结点u。

查找结点u的第一个邻接结点w。

若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

1). 若结点w尚未被访问,则访问结点w并标记为已访问。

2). 结点w入队列

3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8

e1d55cccea34bce7592a4d0c98ca4b02.png

Java实现

前面一文《图的理解:存储结构与邻接矩阵的Java实现》已经给出了邻接矩阵图模型类 AMWGraph.java,在原先类的基础上增加了两个遍历的函数,分别是 depthFirstSearch() 和 broadFirstSearch() 分别代表深度优先和广度优先遍历。

import java.util.ArrayList;

import java.util.LinkedList;

/**

* @description 邻接矩阵模型类

* @author beanlam

* @time 2015.4.17

*/

public class AMWGraph {

private ArrayList vertexList;//存储点的链表

private int[][] edges;//邻接矩阵,用来存储边

private int numOfEdges;//边的数目

public AMWGraph(int n) {

//初始化矩阵,一维数组,和边的数目

edges=new int[n][n];

vertexList=new ArrayList(n);

numOfEdges=0;

}

//得到结点的个数

public int getNumOfVertex() {

return vertexList.size();

}

//得到边的数目

public int getNumOfEdges() {

return numOfEdges;

}

//返回结点i的数据

public Object getValueByIndex(int i) {

return vertexList.get(i);

}

//返回v1,v2的权值

public int getWeight(int v1,int v2) {

return edges[v1][v2];

}

//插入结点

public void insertVertex(Object vertex) {

vertexList.add(vertexList.size(),vertex);

}

//插入结点

public void insertEdge(int v1,int v2,int weight) {

edges[v1][v2]=weight;

numOfEdges++;

}

//删除结点

public void deleteEdge(int v1,int v2) {

edges[v1][v2]=0;

numOfEdges--;

}

//得到第一个邻接结点的下标

public int getFirstNeighbor(int index) {

for(int j=0;j

if (edges[index][j]>0) {

return j;

}

}

return -1;

}

//根据前一个邻接结点的下标来取得下一个邻接结点

public int getNextNeighbor(int v1,int v2) {

for (int j=v2+1;j

if (edges[v1][j]>0) {

return j;

}

}

return -1;

}

//私有函数,深度优先遍历

private void depthFirstSearch(boolean[] isVisited,int i) {

//首先访问该结点,在控制台打印出来

System.out.print(getValueByIndex(i)+" ");

//置该结点为已访问

isVisited[i]=true;

int w=getFirstNeighbor(i);//

while (w!=-1) {

if (!isVisited[w]) {

depthFirstSearch(isVisited,w);

}

w=getNextNeighbor(i, w);

}

}

//对外公开函数,深度优先遍历,与其同名私有函数属于方法重载

public void depthFirstSearch() {

boolean[] isVisited=new boolean[getNumOfVertex()];

//记录结点是否已经被访问的数组

for (int i=0;i

isVisited[i]=false;//把所有节点设置为未访问

}

for(int i=0;i

//因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。

if (!isVisited[i]) {

depthFirstSearch(isVisited,i);

}

}

}

//私有函数,广度优先遍历

private void broadFirstSearch(boolean[] isVisited,int i) {

int u,w;

LinkedList queue=new LinkedList();

//访问结点i

System.out.print(getValueByIndex(i)+" ");

isVisited[i]=true;

//结点入队列

queue.addlast(i);

while (!queue.isEmpty()) {

u=((Integer)queue.removeFirst()).intValue();

w=getFirstNeighbor(u);

while(w!=-1) {

if(!isVisited[w]) {

//访问该结点

System.out.print(getValueByIndex(w)+" ");

//标记已被访问

isVisited[w]=true;

//入队列

queue.addLast(w);

}

//寻找下一个邻接结点

w=getNextNeighbor(u, w);

}

}

}

//对外公开函数,广度优先遍历

public void broadFirstSearch() {

boolean[] isVisited=new boolean[getNumOfVertex()];

for (int i=0;i

isVisited[i]=false;

}

for(int i=0;i

if(!isVisited[i]) {

broadFirstSearch(isVisited, i);

}

}

}

}

上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。

下面根据上面用来举例的图来构造测试类:

public class TestSearch {

public static void main(String args[]) {

int n=8,e=9;//分别代表结点个数和边的数目

String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识

AMWGraph graph=new AMWGraph(n);

for(String label:labels) {

graph.insertVertex(label);//插入结点

}

//插入九条边

graph.insertEdge(0, 1, 1);

graph.insertEdge(0, 2, 1);

graph.insertEdge(1, 3, 1);

graph.insertEdge(1, 4, 1);

graph.insertEdge(3, 7, 1);

graph.insertEdge(4, 7, 1);

graph.insertEdge(2, 5, 1);

graph.insertEdge(2, 6, 1);

graph.insertEdge(5, 6, 1);

graph.insertEdge(1, 0, 1);

graph.insertEdge(2, 0, 1);

graph.insertEdge(3, 1, 1);

graph.insertEdge(4, 1, 1);

graph.insertEdge(7, 3, 1);

graph.insertEdge(7, 4, 1);

graph.insertEdge(4, 2, 1);

graph.insertEdge(5, 2, 1);

graph.insertEdge(6, 5, 1);

System.out.println("深度优先搜索序列为:");

graph.depthFirstSearch();

System.out.println();

System.out.println("广度优先搜索序列为:");

graph.broadFirstSearch();

}

}

运行后控制台输出如下:

acce050745548076bfc9781fae44452b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值